Proton currents constrain structural models of voltage sensor activation

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Sidra Medical Research Center, Qatar
  3. Virginia Commonwealth University School of Medicine, United States
  4. University of Oxford, United Kingdom

Abstract

The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures and provides new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.

Article and author information

Author details

  1. Aaron L Randolph

    Department of Anesthesiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Younes Mokrab

    Sidra Medical Research Center, Doha, Qatar
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashley L Bennett

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark SP Sansom

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-7959
  5. Ian Scott Ramsey

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    For correspondence
    ian.ramsey@vcuhealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6432-4253

Funding

National Institute of General Medical Sciences (R01GM092908)

  • Aaron L Randolph
  • Ashley L Bennett
  • Ian Scott Ramsey

Wellcome

  • Younes Mokrab
  • Mark SP Sansom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Randolph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,310
    views
  • 389
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey
(2016)
Proton currents constrain structural models of voltage sensor activation
eLife 5:e18017.
https://doi.org/10.7554/eLife.18017

Share this article

https://doi.org/10.7554/eLife.18017