Proton currents constrain structural models of voltage sensor activation

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Sidra Medical Research Center, Qatar
  3. Virginia Commonwealth University School of Medicine, United States
  4. University of Oxford, United Kingdom

Abstract

The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures and provides new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.

Article and author information

Author details

  1. Aaron L Randolph

    Department of Anesthesiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Younes Mokrab

    Sidra Medical Research Center, Doha, Qatar
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashley L Bennett

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark SP Sansom

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-7959
  5. Ian Scott Ramsey

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    For correspondence
    ian.ramsey@vcuhealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6432-4253

Funding

National Institute of General Medical Sciences (R01GM092908)

  • Aaron L Randolph
  • Ashley L Bennett
  • Ian Scott Ramsey

Wellcome

  • Younes Mokrab
  • Mark SP Sansom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Randolph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,296
    views
  • 389
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey
(2016)
Proton currents constrain structural models of voltage sensor activation
eLife 5:e18017.
https://doi.org/10.7554/eLife.18017

Share this article

https://doi.org/10.7554/eLife.18017

Further reading

    1. Structural Biology and Molecular Biophysics
    Chris van Hoorn, Andrew P Carter
    Research Article

    Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet’s filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.

    1. Structural Biology and Molecular Biophysics
    Jian Wu, Nisha A Jonniya ... Susan S Taylor
    Research Article

    Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.