Proton currents constrain structural models of voltage sensor activation

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Sidra Medical Research Center, Qatar
  3. Virginia Commonwealth University School of Medicine, United States
  4. University of Oxford, United Kingdom

Abstract

The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures and provides new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.

Article and author information

Author details

  1. Aaron L Randolph

    Department of Anesthesiology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Younes Mokrab

    Sidra Medical Research Center, Doha, Qatar
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashley L Bennett

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark SP Sansom

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6360-7959
  5. Ian Scott Ramsey

    Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States
    For correspondence
    ian.ramsey@vcuhealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6432-4253

Funding

National Institute of General Medical Sciences (R01GM092908)

  • Aaron L Randolph
  • Ashley L Bennett
  • Ian Scott Ramsey

Wellcome

  • Younes Mokrab
  • Mark SP Sansom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Version history

  1. Received: May 20, 2016
  2. Accepted: August 29, 2016
  3. Accepted Manuscript published: August 30, 2016 (version 1)
  4. Version of Record published: October 14, 2016 (version 2)

Copyright

© 2016, Randolph et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,280
    views
  • 388
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron L Randolph
  2. Younes Mokrab
  3. Ashley L Bennett
  4. Mark SP Sansom
  5. Ian Scott Ramsey
(2016)
Proton currents constrain structural models of voltage sensor activation
eLife 5:e18017.
https://doi.org/10.7554/eLife.18017

Share this article

https://doi.org/10.7554/eLife.18017

Further reading

    1. Structural Biology and Molecular Biophysics
    Abdul Wasim, Sneha Menon, Jagannath Mondal
    Research Article

    Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson’s disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.