Dopamine neurons learn relative chosen value from probabilistic rewards

  1. Armin Lak  Is a corresponding author
  2. William R Stauffer
  3. Wolfram Schultz
  1. University College London, United Kingdom
  2. University of Cambridge, United Kingdom

Abstract

Economic theories posit reward probability as one of the factors defining reward value. Individuals learn the value of cues that predict probabilistic rewards from experienced reward frequencies. Building on the notion that responses of dopamine neurons increase with reward probability and expected value, we asked how dopamine neurons in monkeys acquire this value signal that may represent an economic decision variable. We found in a Pavlovian learning task that reward probability-dependent value signals arose from experienced reward frequencies. We then assessed neuronal response acquisition during choices among probabilistic rewards. Here, dopamine responses became sensitive to the value of both chosen and unchosen options. Both experiments showed also the novelty responses of dopamine neurones that decreased as learning advanced. These results show that dopamine neurons acquire predictive value signals from the frequency of experienced rewards. This flexible and fast signal reflects a specific decision variable and could update neuronal decision mechanisms.

Article and author information

Author details

  1. Armin Lak

    Institute of Ophthalmology, University College London, London, United Kingdom
    For correspondence
    arminlak@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1926-5458
  2. William R Stauffer

    Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Wolfram Schultz

    Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Wolfram Schultz, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8530-4518

Funding

Wellcome (WT106101)

  • Armin Lak

Wellcome

  • Wolfram Schultz

European Research Council

  • Wolfram Schultz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Ethics

Animal experimentation: All experimental protocols and procedures were approved by the Home Office of the United Kingdom (project licence number: 80 / 2416).

Version history

  1. Received: May 21, 2016
  2. Accepted: October 25, 2016
  3. Accepted Manuscript published: October 27, 2016 (version 1)
  4. Version of Record published: November 15, 2016 (version 2)

Copyright

© 2016, Lak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,802
    views
  • 841
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Armin Lak
  2. William R Stauffer
  3. Wolfram Schultz
(2016)
Dopamine neurons learn relative chosen value from probabilistic rewards
eLife 5:e18044.
https://doi.org/10.7554/eLife.18044

Share this article

https://doi.org/10.7554/eLife.18044

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.