Abstract

Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1,555), 49% (247/500), and 53% (640/1,198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs.

Article and author information

Author details

  1. Cherry Lim

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2555-6980
  2. Emi Takahashi

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  3. Maliwan Hongsuwan

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  4. Vanaporn Wuthiekanun

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  5. Visanu Thamlikitkul

    Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  6. Soawapak Hinjoy

    Bureau of Epidemiology, Ministry of Public Health, Nonthaburi, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicholas PJ Day

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  8. Sharon J Peacock

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  9. Direk Limmathurotsakul

    Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
    For correspondence
    direk@tropmedres.ac
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7240-5320

Funding

Ministry of Public Health

  • Direk Limmathurotsakul

Wellcome (100484/Z/12/Z)

  • Nicholas PJ Day
  • Direk Limmathurotsakul

Wellcome (100484/Z/12/Z)

  • Cherry Lim

Wellcome (101103/Z/13/Z)

  • Direk Limmathurotsakul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,709
    views
  • 1,258
    downloads
  • 212
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cherry Lim
  2. Emi Takahashi
  3. Maliwan Hongsuwan
  4. Vanaporn Wuthiekanun
  5. Visanu Thamlikitkul
  6. Soawapak Hinjoy
  7. Nicholas PJ Day
  8. Sharon J Peacock
  9. Direk Limmathurotsakul
(2016)
Epidemiology and burden of multidrug-resistant bacterial infection in a developing country
eLife 5:e18082.
https://doi.org/10.7554/eLife.18082

Share this article

https://doi.org/10.7554/eLife.18082

Further reading

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Amanda C Perofsky, John Huddleston ... Cécile Viboud
    Research Article

    Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.