1. Cell Biology
  2. Developmental Biology
Download icon

In vivo genetic dissection of tumor growth and the warburg effect

  1. Cheng-Wei Wang
  2. Arunima Purkayastha
  3. Kevin T Jones
  4. Shivani K Thaker
  5. Utpal Banerjee  Is a corresponding author
  1. University of California, Los Angeles, United States
Research Article
  • Cited 40
  • Views 4,416
  • Annotations
Cite this article as: eLife 2016;5:e18126 doi: 10.7554/eLife.18126

Abstract

A well-characterized metabolic landmark for aggressive cancers is the reprogramming from oxidative phosphorylation to aerobic glycolysis, referred to as the Warburg effect. Models mimicking this process are often incomplete due to genetic complexities of tumors and cell lines containing unmapped collaborating mutations. In order to establish a system where individual components of oncogenic signals and metabolic pathways can be readily elucidated, we induced a glycolytic tumor in the Drosophila wing imaginal disc by activating the oncogene PDGF/VEGF-receptor (Pvr). This causes activation of multiple oncogenic pathways including Ras, PI3K/Akt, Raf/ERK, Src and JNK. Together this network of genes stabilizes Hifα (Sima) that in turn, transcriptionally up-regulates many genes encoding glycolytic enzymes. Collectively, this network of genes also causes inhibition of pyruvate dehydrogenase (PDH) activity resulting in diminished ox-phos levels. The high ROS produced during this process functions as a feedback signal to consolidate this metabolic reprogramming.

Article and author information

Author details

  1. Cheng-Wei Wang

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Arunima Purkayastha

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Kevin T Jones

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Shivani K Thaker

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Utpal Banerjee

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    banerjee@mbi.ucla.edu
    Competing interests
    Utpal Banerjee, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6247-0284

Funding

American Cancer Society (Postdoctoral fellowship (#PF-10-130-01-DDC))

  • Kevin T Jones

National Institutes of Health (RO1-EY008152)

  • Utpal Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, Tata Institute of Fundamental Research, India

Publication history

  1. Received: May 25, 2016
  2. Accepted: August 31, 2016
  3. Accepted Manuscript published: September 1, 2016 (version 1)
  4. Version of Record published: September 20, 2016 (version 2)

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,416
    Page views
  • 1,286
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Ahmad F Alghanem et al.
    Research Article

    The endothelium responds to numerous chemical and mechanical factors in regulating vascular tone, blood pressure and blood flow. The endothelial volume regulatory anion channel (VRAC) has been proposed to be mechano-sensitive and thereby sense fluid flow and hydrostatic pressure to regulate vascular function. Here, we show that the Leucine Rich Repeat Containing Protein 8a, LRRC8A (SWELL1) is required for VRAC in human umbilical vein endothelial cells (HUVECs). Endothelial LRRC8A regulates AKT-eNOS signaling under basal, stretch and shear-flow stimulation, forms a GRB2-Cav1-eNOS signaling complex, and is required for endothelial cell alignment to laminar shear flow. Endothelium-restricted Lrrc8a KO mice develop hypertension in response to chronic angiotensin-II infusion and exhibit impaired retinal blood flow with both diffuse and focal blood vessel narrowing in the setting of Type 2 diabetes (T2D). These data demonstrate that LRRC8A regulates AKT-eNOS in endothelium and is required for maintaining vascular function, particularly in the setting of T2D.

    1. Cell Biology
    2. Developmental Biology
    Radek Jankele et al.
    Research Article

    Asymmetric divisions that yield daughter cells of different sizes are frequent during early embryogenesis, but the importance of such a physical difference for successful development remains poorly understood. Here, we investigated this question using the first division of C. elegans embryos, which yields a large AB cell and a small P1 cell. We equalized AB and P1 sizes using acute genetic inactivation or optogenetic manipulation of the spindle positioning protein LIN-5. We uncovered that only some embryos tolerated equalization, and that there was a size asymmetry threshold for viability. Cell lineage analysis of equalized embryos revealed an array of defects, including faster cell cycle progression in P1 descendants, as well as defects in cell positioning, division orientation and cell fate. Moreover, equalized embryos were more susceptible to external compression. Overall, we conclude that unequal first cleavage is essential for invariably successful embryonic development of C. elegans.