In vivo genetic dissection of tumor growth and the warburg effect

  1. Cheng-Wei Wang
  2. Arunima Purkayastha
  3. Kevin T Jones
  4. Shivani K Thaker
  5. Utpal Banerjee  Is a corresponding author
  1. University of California, Los Angeles, United States

Abstract

A well-characterized metabolic landmark for aggressive cancers is the reprogramming from oxidative phosphorylation to aerobic glycolysis, referred to as the Warburg effect. Models mimicking this process are often incomplete due to genetic complexities of tumors and cell lines containing unmapped collaborating mutations. In order to establish a system where individual components of oncogenic signals and metabolic pathways can be readily elucidated, we induced a glycolytic tumor in the Drosophila wing imaginal disc by activating the oncogene PDGF/VEGF-receptor (Pvr). This causes activation of multiple oncogenic pathways including Ras, PI3K/Akt, Raf/ERK, Src and JNK. Together this network of genes stabilizes Hifα (Sima) that in turn, transcriptionally up-regulates many genes encoding glycolytic enzymes. Collectively, this network of genes also causes inhibition of pyruvate dehydrogenase (PDH) activity resulting in diminished ox-phos levels. The high ROS produced during this process functions as a feedback signal to consolidate this metabolic reprogramming.

Article and author information

Author details

  1. Cheng-Wei Wang

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Arunima Purkayastha

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Kevin T Jones

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Shivani K Thaker

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Utpal Banerjee

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    banerjee@mbi.ucla.edu
    Competing interests
    Utpal Banerjee, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6247-0284

Funding

American Cancer Society (Postdoctoral fellowship (#PF-10-130-01-DDC))

  • Kevin T Jones

National Institutes of Health (RO1-EY008152)

  • Utpal Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,536
    views
  • 1,406
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cheng-Wei Wang
  2. Arunima Purkayastha
  3. Kevin T Jones
  4. Shivani K Thaker
  5. Utpal Banerjee
(2016)
In vivo genetic dissection of tumor growth and the warburg effect
eLife 5:e18126.
https://doi.org/10.7554/eLife.18126

Share this article

https://doi.org/10.7554/eLife.18126

Further reading

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.

    1. Cell Biology
    Nancy Nader, Lama Assaf ... Khaled Machaca
    Research Article

    The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.