In vivo genetic dissection of tumor growth and the warburg effect

  1. Cheng-Wei Wang
  2. Arunima Purkayastha
  3. Kevin T Jones
  4. Shivani K Thaker
  5. Utpal Banerjee  Is a corresponding author
  1. University of California, Los Angeles, United States

Abstract

A well-characterized metabolic landmark for aggressive cancers is the reprogramming from oxidative phosphorylation to aerobic glycolysis, referred to as the Warburg effect. Models mimicking this process are often incomplete due to genetic complexities of tumors and cell lines containing unmapped collaborating mutations. In order to establish a system where individual components of oncogenic signals and metabolic pathways can be readily elucidated, we induced a glycolytic tumor in the Drosophila wing imaginal disc by activating the oncogene PDGF/VEGF-receptor (Pvr). This causes activation of multiple oncogenic pathways including Ras, PI3K/Akt, Raf/ERK, Src and JNK. Together this network of genes stabilizes Hifα (Sima) that in turn, transcriptionally up-regulates many genes encoding glycolytic enzymes. Collectively, this network of genes also causes inhibition of pyruvate dehydrogenase (PDH) activity resulting in diminished ox-phos levels. The high ROS produced during this process functions as a feedback signal to consolidate this metabolic reprogramming.

Article and author information

Author details

  1. Cheng-Wei Wang

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Arunima Purkayastha

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Kevin T Jones

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Shivani K Thaker

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Utpal Banerjee

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    banerjee@mbi.ucla.edu
    Competing interests
    Utpal Banerjee, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6247-0284

Funding

American Cancer Society (Postdoctoral fellowship (#PF-10-130-01-DDC))

  • Kevin T Jones

National Institutes of Health (RO1-EY008152)

  • Utpal Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, Tata Institute of Fundamental Research, India

Version history

  1. Received: May 25, 2016
  2. Accepted: August 31, 2016
  3. Accepted Manuscript published: September 1, 2016 (version 1)
  4. Version of Record published: September 20, 2016 (version 2)

Copyright

© 2016, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,406
    views
  • 1,394
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cheng-Wei Wang
  2. Arunima Purkayastha
  3. Kevin T Jones
  4. Shivani K Thaker
  5. Utpal Banerjee
(2016)
In vivo genetic dissection of tumor growth and the warburg effect
eLife 5:e18126.
https://doi.org/10.7554/eLife.18126

Share this article

https://doi.org/10.7554/eLife.18126

Further reading

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including a-synuclein (aSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1,200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble aSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

    1. Cell Biology
    Yuhao Wang, Linhao Ruan ... Rong Li
    Research Article

    Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the ‘mitochondria as guardian in cytosol’ (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.