Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles

  1. Gábor Molnár
  2. Márton Rózsa
  3. Judith Baka
  4. Noémi Holderith
  5. Pál Barzó
  6. Zoltan Nusser
  7. Gábor Tamás  Is a corresponding author
  1. University of Szeged, Hungary
  2. Hungarian Academy of Sciences, Hungary

Abstract

Classic theories link cognitive abilities to synaptic properties and human-specific biophysical features of synapses might contribute to the unparalleled performance of the human cerebral cortex. Paired recordings and multiple probability fluctuation analysis revealed similar quantal sizes, but 4-times more functional release sites in human pyramidal cell to fast-spiking interneuron connections compared to rats. These connections were mediated on average by three synaptic contacts in both species. Each presynaptic active zone (AZ) contains 6.2 release sites in human, but only 1.6 in rats. Electron microscopy (EM) and EM tomography showed that an AZ harbors 4 docked vesicles in human, but only a single one in rats. Consequently, a Katz's functional release site occupies ~0.012 μm2 in the human presynaptic AZ and ~0.025 μm2 in the rat. Our results reveal a robust difference in the biophysical properties of a well-defined synaptic connection of the cortical microcircuit of human and rodents.

Article and author information

Author details

  1. Gábor Molnár

    MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Márton Rózsa

    MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Judith Baka

    MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Noémi Holderith

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0024-3980
  5. Pál Barzó

    Department of Neurosurgery, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Zoltan Nusser

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7004-4111
  7. Gábor Tamás

    MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
    For correspondence
    gtamas@bio.u-szeged.hu
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (INTERIMPACT)

  • Gábor Tamás

European Research Council (293681)

  • Zoltan Nusser

Magyar Tudományos Akadémia (MTA-SZTE Agykergi Neuronhalozatok Kutatocsoport)

  • Gábor Tamás

Magyar Tudományos Akadémia (Lendület, LP2012-29)

  • Zoltan Nusser

Magyar Tudományos Akadémia (Janos Bolyai Scholarship)

  • Noémi Holderith

Nemzeti Kutatási és Technológiai Hivatal (VKSZ_14-1-2015-0155)

  • Gábor Tamás

Nemzeti Agykutatasi Program (NAP-A)

  • Gábor Molnár

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marlene Bartos, Albert-Ludwigs-Universität Freiburg, Germany

Ethics

Animal experimentation: All experimental protocols and procedures were performed according to the European Communities Council Directives of 1986 (86/609/EEC) and 2003 (2003/65/CE) for animal research and were approved by the Ethics Committee of the University of Szeged.

Human subjects: All procedures were performed according to the Declaration of Helsinki with the approval of the University of Szeged Ethical Committee. Informed consent, and consent to publish, was obtained from patients. The permit number for our human experiments is 75/2004 issued by the Human Investigation Review Board of the University of Szeged.

Version history

  1. Received: May 25, 2016
  2. Accepted: August 15, 2016
  3. Accepted Manuscript published: August 18, 2016 (version 1)
  4. Version of Record published: August 25, 2016 (version 2)

Copyright

© 2016, Molnár et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,492
    views
  • 593
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gábor Molnár
  2. Márton Rózsa
  3. Judith Baka
  4. Noémi Holderith
  5. Pál Barzó
  6. Zoltan Nusser
  7. Gábor Tamás
(2016)
Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles
eLife 5:e18167.
https://doi.org/10.7554/eLife.18167

Share this article

https://doi.org/10.7554/eLife.18167

Further reading

    1. Neuroscience
    Max Schulz, Malte Wöstmann
    Insight

    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.