1. Structural Biology and Molecular Biophysics
Download icon

Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism

  1. Jingjing Guo
  2. Huan-Xiang Zhou  Is a corresponding author
  1. Henan Normal University, China
  2. Florida State University, United States
Research Article
  • Cited 4
  • Views 624
  • Annotations
Cite this article as: eLife 2016;5:e18249 doi: 10.7554/eLife.18249

Abstract

Small ubiquitin-related modifiers (SUMOs) are conjugated to proteins to regulate a variety of cellular processes. SENPs are cysteine proteases with a catalytic center located within a channel between two subdomains that catalyzes SUMO C-terminal cleavage for processing of SUMO precursors and de-SUMOylation of target proteins. The β-grasp domain of SUMOs binds to an exosite cleft, and allosterically activates SENPs via an unknown mechanism. Our molecular dynamics simulations showed that binding of the β-grasp domain induces significant conformational and dynamic changes in SENP1, including widening of the exosite cleft and quenching of nanosecond dynamics in all but a distal region. A dock-and-coalesce mechanism emerges for SENP-catalyzed SUMO cleavage: the wedging of the β-grasp domain enables the docking of the proximal portion of the C-terminus and the strengthened cross-channel motional coupling initiates inter-subdomain correlated motions to allow for the distal portion to coalesce around the catalytic center.

Article and author information

Author details

  1. Jingjing Guo

    Henan Engineering Research Center of Chiral Hydroxyl Pharmaceuticals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Huan-Xiang Zhou

    Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahassee, United States
    For correspondence
    hzhou4@fsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9020-0302

Funding

National Institutes of Health (GM058187)

  • Huan-Xiang Zhou

National Institutes of Health (GM118091)

  • Huan-Xiang Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Publication history

  1. Received: May 27, 2016
  2. Accepted: August 29, 2016
  3. Accepted Manuscript published: August 31, 2016 (version 1)
  4. Version of Record published: September 20, 2016 (version 2)

Copyright

© 2016, Guo & Zhou

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 624
    Page views
  • 215
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph W Nors et al.
    Research Article Updated

    Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that modulate activity of GABAA receptors (GABAARs), neurotransmitter-gated ion channels critical for synaptic transmission. However, the physical basis of this modulation is poorly understood. We explore the role of an important gating domain, the α1M2–M3 linker, in linkage between the BZD site and pore gate. To probe energetics of this coupling without complication from bound agonist, we use a gain of function mutant (α1L9'Tβ2γ2L) directly activated by BZDs. We identify a specific residue whose mutation (α1V279A) more than doubles the energetic contribution of the BZD positive modulator diazepam (DZ) to pore opening and also enhances DZ potentiation of GABA-evoked currents in a wild-type background. In contrast, other linker mutations have little effect on DZ efficiency, but generally impair unliganded pore opening. Our observations reveal an important residue regulating BZD-pore linkage, thereby shedding new light on the molecular mechanism of these drugs.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Valeria Zoni et al.
    Research Article Updated

    Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids’ acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.