MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs

  1. C David Wood
  2. Hildegonda Veenstra
  3. Sarika Khasnis
  4. Andrea Gunnell
  5. Helen M Webb
  6. Claire Shannon-Lowe
  7. Simon Andrews
  8. Cameron S Osborne
  9. Michelle J West  Is a corresponding author
  1. University of Sussex, United Kingdom
  2. University of Birmingham, United Kingdom
  3. Babraham Institute, United Kingdom
  4. King's College London School of Medicine, United Kingdom

Abstract

Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.

Data availability

The following data sets were generated

Article and author information

Author details

  1. C David Wood

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hildegonda Veenstra

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarika Khasnis

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Gunnell

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Helen M Webb

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Claire Shannon-Lowe

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon Andrews

    Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Cameron S Osborne

    Department of Genetics and Molecular Medicine, King's College London School of Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Michelle J West

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    m.j.west@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9497-9365

Funding

Bloodwise (12035)

  • Michelle J West

Bloodwise (15024)

  • Michelle J West

Bloodwise (14007)

  • Cameron S Osborne

Medical Research Council (MR/J002046/1)

  • Claire Shannon-Lowe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Wood et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,053
    views
  • 817
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. C David Wood
  2. Hildegonda Veenstra
  3. Sarika Khasnis
  4. Andrea Gunnell
  5. Helen M Webb
  6. Claire Shannon-Lowe
  7. Simon Andrews
  8. Cameron S Osborne
  9. Michelle J West
(2016)
MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs
eLife 5:e18270.
https://doi.org/10.7554/eLife.18270

Share this article

https://doi.org/10.7554/eLife.18270

Further reading

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.