Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility

  1. Chan-Wang Jerry Lio  Is a corresponding author
  2. Jiayuan Zhang
  3. Edahí González-Avalos
  4. Patrick G Hogan
  5. Xing Chang  Is a corresponding author
  6. Anjana Rao  Is a corresponding author
  1. La Jolla Institute For Allergy & Immunology, United States
  2. Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, China
  3. La Jolla Institute For Allergy and Immunology, United States

Abstract

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine, facilitating DNA demethylation and generating new epigenetic marks. Here we show that concomitant loss of Tet2 and Tet3 in mice at early B cell stage blocked the pro- to pre-B cell transition in the bone marrow, decreased Irf4 expression and impaired the germline transcription and rearrangement of the Igκ locus. Tet2/3-deficient pro-B cells showed increased CpG methylation at the Igκ 3' and distal enhancers that was mimicked by depletion of E2A or PU.1, as well as a global decrease in chromatin accessibility at enhancers. Importantly, re-expression of the Tet2 catalytic domain in Tet2/3-deficient B cells resulted in demethylation of the Igκ enhancers and restored their chromatin accessibility. Our data suggest that TET proteins and lineage-specific transcription factors cooperate to influence chromatin accessibility and Igκ enhancer function by modulating the modification status of DNA.

Data availability

The following data sets were generated
    1. Chang X
    2. Lio CW
    3. Zhang J
    4. Hogan PG and Rao A
    (2016) Role of Tet proteins in B cell development
    Publicly available at the NCBI BioProject database (accession no: PRJNA324297).
The following previously published data sets were used

Article and author information

Author details

  1. Chan-Wang Jerry Lio

    Division of Signaling and Gene Expression, La Jolla Institute For Allergy & Immunology, San Diego, United States
    For correspondence
    lio@lji.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3876-6741
  2. Jiayuan Zhang

    Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Edahí González-Avalos

    Division of Signaling and Gene Expression, La Jolla Institute For Allergy and Immunology, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick G Hogan

    Division of Signaling and Gene Expression, La Jolla Institute For Allergy and Immunology, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xing Chang

    Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
    For correspondence
    changxing@sibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  6. Anjana Rao

    Division of Signaling and Gene Expression, La Jolla Institute For Allergy and Immunology, San Diego, United States
    For correspondence
    arao@lji.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cancer Research Institute (Irvington Postdoctoral Fellowship)

  • Chan-Wang Jerry Lio

National Institutes of Health (AI44432)

  • Anjana Rao

National Institutes of Health (CA151535)

  • Anjana Rao

Leukemia and Lymphoma Society (6187-12)

  • Anjana Rao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal works were performed according to protocol (AP128-AR2-0516) approved by the Institutional Animal Care and Use Committee at La Jolla Institute.

Copyright

© 2016, Lio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,342
    views
  • 1,061
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chan-Wang Jerry Lio
  2. Jiayuan Zhang
  3. Edahí González-Avalos
  4. Patrick G Hogan
  5. Xing Chang
  6. Anjana Rao
(2016)
Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility
eLife 5:e18290.
https://doi.org/10.7554/eLife.18290

Share this article

https://doi.org/10.7554/eLife.18290

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.