Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila

  1. Nidhi Sharma Dey
  2. Parvathy Ramesh
  3. Mayank Chugh
  4. Sudip Mandal
  5. Lolitika Mandal  Is a corresponding author
  1. Indian Institute of Science Education and Research, India
  2. University of Tuebingen, Germany

Abstract

Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

Article and author information

Author details

  1. Nidhi Sharma Dey

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Parvathy Ramesh

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Mayank Chugh

    Cellular Nanoscience, Center for Plant Molecular Biology, University of Tuebingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudip Mandal

    Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Lolitika Mandal

    Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
    For correspondence
    lolitika@iisermohali.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7711-6090

Funding

WellcomeTrust DBT Alliance (500124/Z09/Z)

  • Lolitika Mandal

Indian Institute of Science Education and Research Pune

  • Nidhi Sharma Dey
  • Parvathy Ramesh
  • Mayank Chugh
  • Sudip Mandal
  • Lolitika Mandal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Version history

  1. Received: May 30, 2016
  2. Accepted: October 25, 2016
  3. Accepted Manuscript published: October 26, 2016 (version 1)
  4. Accepted Manuscript updated: October 31, 2016 (version 2)
  5. Version of Record published: November 23, 2016 (version 3)
  6. Version of Record updated: November 30, 2016 (version 4)
  7. Version of Record updated: September 11, 2019 (version 5)

Copyright

© 2016, Dey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,659
    views
  • 933
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nidhi Sharma Dey
  2. Parvathy Ramesh
  3. Mayank Chugh
  4. Sudip Mandal
  5. Lolitika Mandal
(2016)
Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila
eLife 5:e18295.
https://doi.org/10.7554/eLife.18295

Share this article

https://doi.org/10.7554/eLife.18295

Further reading

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.