Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development

  1. Kasmir Ramo
  2. Koichi Sugamura
  3. Siobhan Craige
  4. John Keaney
  5. Roger J Davis  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. UMASS Medical School, United States

Abstract

Arterial occlusive diseases are major causes of morbidity and mortality. Blood flow to the affected tissue must be restored quickly if viability and function are to be preserved. We report that disruption of the mixed-lineage protein kinase (MLK) - cJun NH2-terminal kinase (JNK) signaling pathway in endothelial cells causes severe blockade of blood flow and failure to recover in the murine femoral artery ligation model of hindlimb ischemia. We show that the MLK-JNK pathway is required for the formation of native collateral arteries that can restore circulation following arterial occlusion. Disruption of the MLK-JNK pathway causes decreased Dll4/Notch signaling, excessive sprouting angiogenesis, and defects in developmental vascular morphogenesis. Our analysis demonstrates that the MLK-JNK signaling pathway is a key regulatory mechanism that protects against ischemia in arterial occlusive disease.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Kasmir Ramo

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Koichi Sugamura

    Cardiovascular Medicine Division, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Siobhan Craige

    Cardiovascular Medicine Division, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  4. John Keaney

    Department of Medicine, UMASS Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Roger J Davis

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    roger.davis@umassmed.edu
    Competing interests
    Roger J Davis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0130-1652

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK107220)

  • Roger J Davis

National Heart, Lung, and Blood Institute (R01HL09122)

  • John Keaney

Howard Hughes Medical Institute (Investigatorship)

  • Roger J Davis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A1032) of the University of Massachusetts Medical School, Tufts University School of Medicine, and Brigham & Women's Hospital.

Copyright

© 2016, Ramo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,067
    views
  • 452
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kasmir Ramo
  2. Koichi Sugamura
  3. Siobhan Craige
  4. John Keaney
  5. Roger J Davis
(2016)
Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development
eLife 5:e18414.
https://doi.org/10.7554/eLife.18414

Share this article

https://doi.org/10.7554/eLife.18414

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.