Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence

  1. Eun Jo Du
  2. Tae Jung Ahn
  3. Xianlan Wen
  4. Dae-Won Seo
  5. Duk L Na
  6. Jae Young Kwon
  7. Myunghwan Choi
  8. Hyung-Wook Kim
  9. Hana Cho
  10. KyeongJin Kang  Is a corresponding author
  1. Sungkyunkwan University School of Medicine, Republic of Korea
  2. Sungkyunkwan University, Republic of Korea
  3. Sejong University, Republic of Korea

Abstract

Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependentce re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.

Article and author information

Author details

  1. Eun Jo Du

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Tae Jung Ahn

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Xianlan Wen

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Dae-Won Seo

    Department of Neurology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Duk L Na

    Department of Neurology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Jae Young Kwon

    Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Myunghwan Choi

    Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Hyung-Wook Kim

    College of Life Sciences, Sejong University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Hana Cho

    Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9394-8671
  10. KyeongJin Kang

    Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
    For correspondence
    kangk@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-469X

Funding

Ministry of Education (NRF-2015R1D1A1A01057288)

  • KyeongJin Kang

Ministry of Education (2015H-1A2A-1034723)

  • Tae Jung Ahn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leslie C Griffith, Brandeis University, United States

Version history

  1. Received: June 2, 2016
  2. Accepted: September 21, 2016
  3. Accepted Manuscript published: September 22, 2016 (version 1)
  4. Version of Record published: October 18, 2016 (version 2)

Copyright

© 2016, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,491
    views
  • 456
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eun Jo Du
  2. Tae Jung Ahn
  3. Xianlan Wen
  4. Dae-Won Seo
  5. Duk L Na
  6. Jae Young Kwon
  7. Myunghwan Choi
  8. Hyung-Wook Kim
  9. Hana Cho
  10. KyeongJin Kang
(2016)
Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence
eLife 5:e18425.
https://doi.org/10.7554/eLife.18425

Share this article

https://doi.org/10.7554/eLife.18425

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.