Abstract

During illumination, the light sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.

Article and author information

Author details

  1. Rajan Thakur

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9511-5729
  2. Aniruddha Panda

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Elise Coessens

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikita Raj

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Shweta Yadav

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Sruthi Balakrishnan

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Qifeng Zhang

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Plamen Georgiev

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Bishal Basak

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Renu Pasricha

    National Centre for Biological Sciences, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael JO Wakelam

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas T Ktistakis

    Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9397-2914
  13. Raghu Padinjat

    National Centre for Biological Sciences, Bangalore, India
    For correspondence
    praghu@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3578-6413

Funding

Wellcome Trust DBT India Alliance (IA/S/14/2/501540)

  • Rajan Thakur
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Raghu Padinjat

National Centre for Biological Sciences (core)

  • Rajan Thakur
  • Aniruddha Panda
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Renu Pasricha
  • Raghu Padinjat

Department of Biotechnology , Ministry of Science and Technology (BT/PR4833/MED/30/744/2012)

  • Rajan Thakur
  • Aniruddha Panda
  • Nikita Raj
  • Shweta Yadav
  • Sruthi Balakrishnan
  • Bishal Basak
  • Renu Pasricha
  • Raghu Padinjat

Biotechnology and Biological Sciences Research Council (core)

  • Elise Coessens
  • Qifeng Zhang
  • Plamen Georgiev
  • Michael JO Wakelam
  • Nicholas T Ktistakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: June 5, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 16, 2016 (version 1)
  4. Version of Record published: November 28, 2016 (version 2)

Copyright

© 2016, Thakur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,210
    views
  • 643
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajan Thakur
  2. Aniruddha Panda
  3. Elise Coessens
  4. Nikita Raj
  5. Shweta Yadav
  6. Sruthi Balakrishnan
  7. Qifeng Zhang
  8. Plamen Georgiev
  9. Bishal Basak
  10. Renu Pasricha
  11. Michael JO Wakelam
  12. Nicholas T Ktistakis
  13. Raghu Padinjat
(2016)
Phospholipase D activity couples plasma membrane endocytosis with retromer dependent recycling
eLife 5:e18515.
https://doi.org/10.7554/eLife.18515

Share this article

https://doi.org/10.7554/eLife.18515

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.