Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit

  1. Marianne J Bezaire  Is a corresponding author
  2. Ivan Raikov
  3. Kelly Burk
  4. Dhrumil Vyas
  5. Ivan Soltesz
  1. Boston University, United States
  2. Stanford University, United States
  3. University of California, Irvine, United States

Abstract

The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marianne J Bezaire

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    For correspondence
    marianne.bezaire@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6040-3520
  2. Ivan Raikov

    Department of Neurosurgery, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8224-8549
  3. Kelly Burk

    Anatomy & Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dhrumil Vyas

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivan Soltesz

    Department of Neurosurgery, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS35915)

  • Ivan Soltesz

National Science Foundation (IOS-1310378)

  • Ivan Soltesz

National Institutes of Health (F32NS090753)

  • Marianne J Bezaire

National Science Foundation (DGE-0808392)

  • Marianne J Bezaire

NSF XSEDE Allocations (TG-IBN140007,TG-IBN130022,TG-IBN100011)

  • Marianne J Bezaire
  • Ivan Raikov
  • Ivan Soltesz

National Institutes of Health (NS090583)

  • Ivan Soltesz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, University Health Network, Canada

Version history

  1. Received: June 12, 2016
  2. Accepted: December 15, 2016
  3. Accepted Manuscript published: December 23, 2016 (version 1)
  4. Version of Record published: February 16, 2017 (version 2)

Copyright

© 2016, Bezaire et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,209
    Page views
  • 1,367
    Downloads
  • 112
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marianne J Bezaire
  2. Ivan Raikov
  3. Kelly Burk
  4. Dhrumil Vyas
  5. Ivan Soltesz
(2016)
Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit
eLife 5:e18566.
https://doi.org/10.7554/eLife.18566

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.

    1. Computational and Systems Biology
    Ricardo Omar Ramirez Flores, Jan David Lanzer ... Julio Saez-Rodriguez
    Research Article

    Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.