Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function

  1. Zhenwei Lu
  2. Sijo Mathew
  3. Jiang Chen
  4. Arina Hadziselimovic
  5. Riya Palamuttam
  6. Billy G Hudson
  7. Reinhard Faessler
  8. Ambra Pozzi
  9. Charles R Sanders  Is a corresponding author
  10. Roy Zent  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. Vanderbilt Medical Center, United States
  3. Virginia Tech, United States
  4. Max Planck Institute of Biochemistry, Germany

Abstract

Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. Affinities ranging from almost no interaction to the relatively high avidity that characterizes αIIbβ3 exist between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.

Article and author information

Author details

  1. Zhenwei Lu

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  2. Sijo Mathew

    Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  3. Jiang Chen

    Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, United States
    Competing interests
    No competing interests declared.
  4. Arina Hadziselimovic

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  5. Riya Palamuttam

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  6. Billy G Hudson

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Reinhard Faessler

    Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Reinhard Faessler, Reviewing editor, eLife.
  8. Ambra Pozzi

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    Ambra Pozzi, Reviewing editor, eLife.
  9. Charles R Sanders

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    chuck.sanders@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-2862
  10. Roy Zent

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    roy.zent@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2983-8133

Funding

Veterans Affairs San Diego Healthcare System

  • Ambra Pozzi
  • Roy Zent

National Institutes of Health

  • Billy G Hudson
  • Ambra Pozzi
  • Charles R Sanders
  • Roy Zent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,988
    views
  • 522
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenwei Lu
  2. Sijo Mathew
  3. Jiang Chen
  4. Arina Hadziselimovic
  5. Riya Palamuttam
  6. Billy G Hudson
  7. Reinhard Faessler
  8. Ambra Pozzi
  9. Charles R Sanders
  10. Roy Zent
(2016)
Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function
eLife 5:e18633.
https://doi.org/10.7554/eLife.18633

Share this article

https://doi.org/10.7554/eLife.18633

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.