Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function

  1. Zhenwei Lu
  2. Sijo Mathew
  3. Jiang Chen
  4. Arina Hadziselimovic
  5. Riya Palamuttam
  6. Billy G Hudson
  7. Reinhard Faessler
  8. Ambra Pozzi
  9. Charles R Sanders  Is a corresponding author
  10. Roy Zent  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. Vanderbilt Medical Center, United States
  3. Virginia Tech, United States
  4. Max Planck Institute of Biochemistry, Germany

Abstract

Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. Affinities ranging from almost no interaction to the relatively high avidity that characterizes αIIbβ3 exist between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.

Article and author information

Author details

  1. Zhenwei Lu

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  2. Sijo Mathew

    Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  3. Jiang Chen

    Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, United States
    Competing interests
    No competing interests declared.
  4. Arina Hadziselimovic

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  5. Riya Palamuttam

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  6. Billy G Hudson

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Reinhard Faessler

    Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Reinhard Faessler, Reviewing editor, eLife.
  8. Ambra Pozzi

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    Ambra Pozzi, Reviewing editor, eLife.
  9. Charles R Sanders

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    chuck.sanders@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-2862
  10. Roy Zent

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    roy.zent@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2983-8133

Funding

Veterans Affairs San Diego Healthcare System

  • Ambra Pozzi
  • Roy Zent

National Institutes of Health

  • Billy G Hudson
  • Ambra Pozzi
  • Charles R Sanders
  • Roy Zent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,970
    views
  • 522
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenwei Lu
  2. Sijo Mathew
  3. Jiang Chen
  4. Arina Hadziselimovic
  5. Riya Palamuttam
  6. Billy G Hudson
  7. Reinhard Faessler
  8. Ambra Pozzi
  9. Charles R Sanders
  10. Roy Zent
(2016)
Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function
eLife 5:e18633.
https://doi.org/10.7554/eLife.18633

Share this article

https://doi.org/10.7554/eLife.18633

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.