1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function

  1. Zhenwei Lu
  2. Sijo Mathew
  3. Jiang Chen
  4. Arina Hadziselimovic
  5. Riya Palamuttam
  6. Billy G Hudson
  7. Reinhard Faessler
  8. Ambra Pozzi
  9. Charles R Sanders  Is a corresponding author
  10. Roy Zent  Is a corresponding author
  1. Vanderbilt University Medical Center, United States
  2. Vanderbilt Medical Center, United States
  3. Virginia Tech, United States
  4. Max Planck Institute of Biochemistry, Germany
Research Article
  • Cited 18
  • Views 1,526
  • Annotations
Cite this article as: eLife 2016;5:e18633 doi: 10.7554/eLife.18633

Abstract

Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. Affinities ranging from almost no interaction to the relatively high avidity that characterizes αIIbβ3 exist between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.

Article and author information

Author details

  1. Zhenwei Lu

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  2. Sijo Mathew

    Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  3. Jiang Chen

    Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, United States
    Competing interests
    No competing interests declared.
  4. Arina Hadziselimovic

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  5. Riya Palamuttam

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  6. Billy G Hudson

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Reinhard Faessler

    Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Reinhard Faessler, Reviewing editor, eLife.
  8. Ambra Pozzi

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    Ambra Pozzi, Reviewing editor, eLife.
  9. Charles R Sanders

    Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    chuck.sanders@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-2862
  10. Roy Zent

    Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    roy.zent@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2983-8133

Funding

Veterans Affairs San Diego Healthcare System

  • Ambra Pozzi
  • Roy Zent

National Institutes of Health

  • Billy G Hudson
  • Ambra Pozzi
  • Charles R Sanders
  • Roy Zent

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maddy Parsons, King's College London, United Kingdom

Publication history

  1. Received: June 9, 2016
  2. Accepted: December 7, 2016
  3. Accepted Manuscript published: December 8, 2016 (version 1)
  4. Accepted Manuscript updated: December 9, 2016 (version 2)
  5. Accepted Manuscript updated: December 9, 2016 (version 3)
  6. Version of Record published: January 3, 2017 (version 4)
  7. Version of Record updated: January 4, 2017 (version 5)

Copyright

© 2016, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,526
    Page views
  • 489
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Victor M Hernández-Rocamora et al.
    Research Article

    Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin binding proteins are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here we developed a novel FRET-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and we applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high throughput screening for new antimicrobials.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Christopher Icke et al.
    Research Article

    Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.