A computational interactome and functional annotation for the human proteome
Abstract
We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein's function. We provide annotations for most human proteins, including many annotated as having unknown function.
Data availability
-
Coexpression data for C. elegansPublicly available at Coexpressdb (accession no: Cel.c2-0).
-
Coexpression data for dogPublicly available at Coexpressdb (accession no: Cfa.c1-0).
-
Coexpression data for fruit flyPublicly available at Coexpressdb (accession no: Dme.c2-0).
-
Coexpression data for zebrafishPublicly available at Coexpressdb (accession no: Dre.c2-0).
-
Coexpression data for chickenPublicly available at Coexpressdb (accession no: Gga.c2-0).
-
Coexpression data for humanPublicly available at Coexpressdb (accession no: Hsa.c4-0).
-
Coexpression data for humanPublicly available at Coexpressdb (accession no: Hsa2.c1-0).
-
Coexpression data for rhesus monkeyPublicly available at Coexpressdb (accession no: Mcc.c1-0).
-
Coexpression data for mousePublicly available at Coexpressdb (accession no: Mmu.c3-0).
-
Coexpression data for Norway ratPublicly available at Coexpressdb (accession no: Rno.c2-0).
-
Coexpression data for budding yeastPublicly available at Coexpressdb (accession no: Sce.c1-0).
-
Coexpression data for fission yeastPublicly available at Coexpressdb (accession no: Spo.c1-0).
-
Coexpression data for humanPublicly available at Array Express.
Article and author information
Author details
Funding
National Institutes of Health (GM030518)
- Barry Honig
National Institutes of Health (S10OD012351)
- José Ignacio Garzón
- Lei Deng
- Diana Murray
- Sagi Shapira
- Donald Petrey
- Barry Honig
National Institutes of Health (S10OD021764)
- José Ignacio Garzón
- Lei Deng
- Diana Murray
- Sagi Shapira
- Donald Petrey
- Barry Honig
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2016, Garzón et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,730
- views
-
- 807
- downloads
-
- 53
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.
-
- Computational and Systems Biology
- Structural Biology and Molecular Biophysics
Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.