A computational interactome and functional annotation for the human proteome
Abstract
We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein's function. We provide annotations for most human proteins, including many annotated as having unknown function.
Data availability
-
Coexpression data for C. elegansPublicly available at Coexpressdb (accession no: Cel.c2-0).
-
Coexpression data for dogPublicly available at Coexpressdb (accession no: Cfa.c1-0).
-
Coexpression data for fruit flyPublicly available at Coexpressdb (accession no: Dme.c2-0).
-
Coexpression data for zebrafishPublicly available at Coexpressdb (accession no: Dre.c2-0).
-
Coexpression data for chickenPublicly available at Coexpressdb (accession no: Gga.c2-0).
-
Coexpression data for humanPublicly available at Coexpressdb (accession no: Hsa.c4-0).
-
Coexpression data for humanPublicly available at Coexpressdb (accession no: Hsa2.c1-0).
-
Coexpression data for rhesus monkeyPublicly available at Coexpressdb (accession no: Mcc.c1-0).
-
Coexpression data for mousePublicly available at Coexpressdb (accession no: Mmu.c3-0).
-
Coexpression data for Norway ratPublicly available at Coexpressdb (accession no: Rno.c2-0).
-
Coexpression data for budding yeastPublicly available at Coexpressdb (accession no: Sce.c1-0).
-
Coexpression data for fission yeastPublicly available at Coexpressdb (accession no: Spo.c1-0).
-
Coexpression data for humanPublicly available at Array Express.
Article and author information
Author details
Funding
National Institutes of Health (GM030518)
- Barry Honig
National Institutes of Health (S10OD012351)
- José Ignacio Garzón
- Lei Deng
- Diana Murray
- Sagi Shapira
- Donald Petrey
- Barry Honig
National Institutes of Health (S10OD021764)
- José Ignacio Garzón
- Lei Deng
- Diana Murray
- Sagi Shapira
- Donald Petrey
- Barry Honig
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2016, Garzón et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,768
- views
-
- 815
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.
-
- Computational and Systems Biology
Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.