Abstract

We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein's function. We provide annotations for most human proteins, including many annotated as having unknown function.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. José Ignacio Garzón

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lei Deng

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana Murray

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sagi Shapira

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Donald Petrey

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Barry Honig

    Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    bh6@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2480-6696

Funding

National Institutes of Health (GM030518)

  • Barry Honig

National Institutes of Health (S10OD012351)

  • José Ignacio Garzón
  • Lei Deng
  • Diana Murray
  • Sagi Shapira
  • Donald Petrey
  • Barry Honig

National Institutes of Health (S10OD021764)

  • José Ignacio Garzón
  • Lei Deng
  • Diana Murray
  • Sagi Shapira
  • Donald Petrey
  • Barry Honig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Garzón et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,763
    views
  • 815
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Ignacio Garzón
  2. Lei Deng
  3. Diana Murray
  4. Sagi Shapira
  5. Donald Petrey
  6. Barry Honig
(2016)
A computational interactome and functional annotation for the human proteome
eLife 5:e18715.
https://doi.org/10.7554/eLife.18715

Share this article

https://doi.org/10.7554/eLife.18715

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Computational and Systems Biology
    George N Bendzunas, Dominic P Byrne ... Natarajan Kannan
    Research Article

    In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.