A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size

Abstract

Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.

Article and author information

Author details

  1. Gustavo Sigrist Betini

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    For correspondence
    gsbetini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0707-4128
  2. Andrew G McAdam

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Cortland K Griswold

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryan Norris

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ontario Graduate Scholarship

  • Gustavo Sigrist Betini

Natural Sciences and Engineering Research Council of Canada

  • Andrew G McAdam
  • Cortland K Griswold
  • Ryan Norris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lutz Becks, Max Planck Institute for Evolutionary Biology, Germany

Version history

  1. Received: June 13, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 6, 2017 (version 1)
  4. Accepted Manuscript updated: February 7, 2017 (version 2)
  5. Version of Record published: March 7, 2017 (version 3)

Copyright

© 2017, Betini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,318
    views
  • 265
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo Sigrist Betini
  2. Andrew G McAdam
  3. Cortland K Griswold
  4. Ryan Norris
(2017)
A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size
eLife 6:e18770.
https://doi.org/10.7554/eLife.18770

Share this article

https://doi.org/10.7554/eLife.18770

Further reading

    1. Ecology
    Yang Ruan, Ning Ling ... Zhibiao Nan
    Research Article

    Warming and precipitation anomalies affect terrestrial carbon balance partly through altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is known about how such processes responds to simultaneous regime shifts in temperature and precipitation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precipitation manipulation. Our results showed that the growth of major taxa was suppressed by the single and combined effects of temperature and precipitation, eliciting 40–90% of growth reduction of whole community. The antagonistic interactions of warming and altered precipitation on population growth were common (~70% taxa), represented by the weak antagonistic interactions of warming and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter and Pseudonocardia genera had high growth rates under changed climate regimes. These results are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems suffering from multiple climate change factors.

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.