A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size

Abstract

Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.

Article and author information

Author details

  1. Gustavo Sigrist Betini

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    For correspondence
    gsbetini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0707-4128
  2. Andrew G McAdam

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Cortland K Griswold

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. D Ryan Norris

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ontario Graduate Scholarship

  • Gustavo Sigrist Betini

Natural Sciences and Engineering Research Council of Canada

  • Andrew G McAdam
  • Cortland K Griswold
  • D Ryan Norris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lutz Becks, Max Planck Institute for Evolutionary Biology, Germany

Version history

  1. Received: June 13, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 6, 2017 (version 1)
  4. Accepted Manuscript updated: February 7, 2017 (version 2)
  5. Version of Record published: March 7, 2017 (version 3)

Copyright

© 2017, Betini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,316
    views
  • 265
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo Sigrist Betini
  2. Andrew G McAdam
  3. Cortland K Griswold
  4. D Ryan Norris
(2017)
A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size
eLife 6:e18770.
https://doi.org/10.7554/eLife.18770

Share this article

https://doi.org/10.7554/eLife.18770

Further reading

    1. Ecology
    Songdou Zhang, Shiheng An
    Insight

    The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.

    1. Ecology
    2. Evolutionary Biology
    Alexis J Breen, Dominik Deffner
    Research Article

    In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles—a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male—versus female—grackles finish ‘relearning’ faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles’ choice behaviour is governed more strongly by the ‘weight’ of relative differences in recent foraging payoffs—i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning—where we simulate ‘birds’ based on empirical estimates of our grackles’ reinforcement learning—replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.