A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size

Abstract

Although seasonality is widespread and can cause fluctuations in the intensity and direction of natural selection, we have little information about the consequences of seasonal fitness trade-offs for population dynamics. Here we exposed populations of Drosophila melanogaster to repeated seasonal changes in resources across 58 generations and used experimental and mathematical approaches to investigate how viability selection on body size in the non-breeding season could affect demography. We show that opposing seasonal episodes of natural selection on body size interacted with both direct and delayed density dependence to cause populations to undergo predictable multigenerational density cycles. Our results provide evidence that seasonality can set the conditions for life-history trade-offs and density dependence, which can, in turn, interact to cause multigenerational population cycles.

Article and author information

Author details

  1. Gustavo Sigrist Betini

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    For correspondence
    gsbetini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0707-4128
  2. Andrew G McAdam

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Cortland K Griswold

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. D Ryan Norris

    Department of Integrative Biology, University of Guelph, Guelph, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ontario Graduate Scholarship

  • Gustavo Sigrist Betini

Natural Sciences and Engineering Research Council of Canada

  • Andrew G McAdam
  • Cortland K Griswold
  • D Ryan Norris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Betini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,361
    views
  • 269
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gustavo Sigrist Betini
  2. Andrew G McAdam
  3. Cortland K Griswold
  4. D Ryan Norris
(2017)
A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size
eLife 6:e18770.
https://doi.org/10.7554/eLife.18770

Share this article

https://doi.org/10.7554/eLife.18770

Further reading

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.

    1. Ecology
    2. Neuroscience
    Ralph E Peterson, Aman Choudhri ... Dan H Sanes
    Research Article

    In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.