Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9

  1. Juliana S Capitanio
  2. Ben Montpetit
  3. Richard W Wozniak  Is a corresponding author
  1. University of Alberta, Canada

Abstract

Beyond their role at nuclear pore complexes, some nucleoporins function in the nucleoplasm. One such nucleoporin, Nup98, binds chromatin and regulates gene expression. To gain insight into how Nup98 contributes to this process, we focused on identifying novel binding partners and understanding the significance of these interactions. Here we report on the identification of the DExH/D-box helicase DHX9 as an intranuclear Nup98 binding partner. Various results, including in vitro assays, show that the FG/GLFG region of Nup98 binds to N- and C-terminal regions of DHX9 in an RNA facilitated manner. Importantly, binding of Nup98 stimulates the ATPase activity of DHX9, and a transcriptional reporter assay suggests Nup98 supports DHX9-stimulated transcription. Consistent with these observations, our analysis revealed that Nup98 and DHX9 bind interdependently to similar gene loci and their transcripts. Based on our results, we propose that Nup98 functions as a co-factor that regulates DHX9 and, potentially, other RNA helicases.

Data availability

The following previously published data sets were used
    1. Franks T
    2. Hetzer M
    (2016) DamID in HeLa-C cells
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE83692).
    1. Hendrickson DG
    2. Kelley DR
    (2016) Widespread RNA Binding by Chromatin Associated Proteins
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE67963).
    1. Franks T
    2. Hetzer M
    (2016) RNA-seq in HepG2 and IMR90 cells
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE83551).

Article and author information

Author details

  1. Juliana S Capitanio

    Department of Cell Biology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ben Montpetit

    Department of Cell Biology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8317-983X
  3. Richard W Wozniak

    Department of Cell Biology, University of Alberta, Edmonton, Canada
    For correspondence
    rick.wozniak@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2328-0247

Funding

Alberta Innovates - Health Solutions (Graduate Studentship)

  • Juliana S Capitanio

Canadian Institutes of Health Research (MRC Operating Grant Program,130231)

  • Ben Montpetit

Canadian Institutes of Health Research (MRC Operating Grant Program,106502 and 36519)

  • Richard W Wozniak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Capitanio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliana S Capitanio
  2. Ben Montpetit
  3. Richard W Wozniak
(2017)
Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9
eLife 6:e18825.
https://doi.org/10.7554/eLife.18825

Share this article

https://doi.org/10.7554/eLife.18825

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.