Bacterial flagellar capping proteins adopt diverse oligomeric states

  1. Sandra Postel
  2. Daniel Deredge
  3. Daniel A Bonsor
  4. Xiong Yu
  5. Kay Diederichs
  6. Saskia Helmsing
  7. Aviv Vromen
  8. Assaf Friedler
  9. Michael Hust
  10. Edward H Egelman
  11. Dorothy Beckett
  12. Patrick L Wintrode
  13. Eric J Sundberg  Is a corresponding author
  1. University of Maryland School of Medicine, United States
  2. University of Maryland School of Pharmacy, United States
  3. University of Virginia, United States
  4. University of Konstanz, Germany
  5. Technische Universitaet Braunschweig, Germany
  6. The Hebrew University of Jerusalem, Israel
  7. Technische Universität Braunschweig, Germany
  8. University of Maryland College Park, United States

Abstract

Flagella are critical for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. In combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary between bacteria in protofilament number, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

Article and author information

Author details

  1. Sandra Postel

    Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6717-1870
  2. Daniel Deredge

    Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Daniel A Bonsor

    Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Xiong Yu

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  5. Kay Diederichs

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  6. Saskia Helmsing

    Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universitaet Braunschweig, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  7. Aviv Vromen

    Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    No competing interests declared.
  8. Assaf Friedler

    Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    No competing interests declared.
  9. Michael Hust

    Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    No competing interests declared.
  10. Edward H Egelman

    Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
    Competing interests
    Edward H Egelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4844-5212
  11. Dorothy Beckett

    Department of Chemistry and Biochemistry, University of Maryland College Park, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Patrick L Wintrode

    Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, United States
    Competing interests
    No competing interests declared.
  13. Eric J Sundberg

    Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States
    For correspondence
    ESundberg@ihv.umaryland.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0478-3033

Funding

National Center for Research Resources (NIH S10 RR15899)

  • Dorothy Beckett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Postel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,438
    views
  • 536
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra Postel
  2. Daniel Deredge
  3. Daniel A Bonsor
  4. Xiong Yu
  5. Kay Diederichs
  6. Saskia Helmsing
  7. Aviv Vromen
  8. Assaf Friedler
  9. Michael Hust
  10. Edward H Egelman
  11. Dorothy Beckett
  12. Patrick L Wintrode
  13. Eric J Sundberg
(2016)
Bacterial flagellar capping proteins adopt diverse oligomeric states
eLife 5:e18857.
https://doi.org/10.7554/eLife.18857

Share this article

https://doi.org/10.7554/eLife.18857

Further reading

    1. Structural Biology and Molecular Biophysics
    Mart GF Last, Leoni Abendstein ... Thomas H Sharp
    Tools and Resources

    Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation package that is geared towards both high performance and accessibility, available on GitHub. In this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: particle picking for subtomogram averaging, and generating many-feature segmentations of cellular architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, and rendering functionality, as well as an open repository for trained models at aiscryoet.org, we hope that Ais will help accelerate research and dissemination of data involving cryoET.

    1. Structural Biology and Molecular Biophysics
    Mrityunjay Singh, Dinesh C Indurthi ... Shailendra Asthana
    Research Advance

    Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α−δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center (‘flip’), loop C undergoes staged downward displacement (‘flop’), and a compact, stable high-affinity pocket forms (‘fix’). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.