Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression

  1. Edward Pym
  2. Nikhil Sasidharan
  3. Katherine L Thompson-Peer
  4. David J Simon
  5. Anthony Anselmo
  6. Ruslan I Sadreyev
  7. Qi Hall
  8. Stephen Nurrish
  9. Joshua M Kaplan  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. University of California, San Francisco, United States
  3. Stanford School of Medicine, United States

Abstract

Shank is a post-synaptic scaffolding protein that has many binding partners. Shank mutations and copy number variations (CNVs) are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. It is not known which Shank binding partners are responsible for these defects. Here we show that the C. elegans SHN-1/Shank binds L-type calcium channels and that increased and decreased shn-1 gene dosage alter L-channel current and activity-induced expression of a CRH-1/CREB transcriptional target (gem-4 Copine), which parallels the effects of human Shank copy number variations (CNVs) on Autism spectrum disorders and schizophrenia. These results suggest that an important function of Shank proteins is to regulate L-channel current and activity induced gene expression.

Article and author information

Author details

  1. Edward Pym

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikhil Sasidharan

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine L Thompson-Peer

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4200-3870
  4. David J Simon

    Department of Neurobiology, Stanford School of Medicine, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony Anselmo

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Qi Hall

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephen Nurrish

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joshua M Kaplan

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    kaplan@molbio.mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7418-7179

Funding

National Institute of Neurological Disorders and Stroke (NS32196)

  • Joshua M Kaplan

Simons Foundation (SF273555)

  • Joshua M Kaplan

Nancy Lurie Marks Family Foundation

  • Edward Pym

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pym et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,706
    views
  • 348
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Pym
  2. Nikhil Sasidharan
  3. Katherine L Thompson-Peer
  4. David J Simon
  5. Anthony Anselmo
  6. Ruslan I Sadreyev
  7. Qi Hall
  8. Stephen Nurrish
  9. Joshua M Kaplan
(2017)
Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression
eLife 6:e18931.
https://doi.org/10.7554/eLife.18931

Share this article

https://doi.org/10.7554/eLife.18931

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.