Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans

  1. Donato Giovannelli  Is a corresponding author
  2. Stefan M Sievert
  3. Michael Hügler
  4. Stephanie Markert
  5. Dörte Becher
  6. Thomas Schweder
  7. Costantino Vetriani  Is a corresponding author
  1. Rutgers University, United States
  2. Woods Hole Oceanographic Institution, United States
  3. DVGW-Technologiezentrum Wasser, Germany
  4. Ernst-Moritz-Arndt-University Greifswald, Germany

Abstract

Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans: the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid carbon fixation pathway for CO2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Donato Giovannelli

    Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, United States
    For correspondence
    giovannelli@marine.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan M Sievert

    Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Hügler

    DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2820-0333
  4. Stephanie Markert

    Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dörte Becher

    Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Schweder

    Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Costantino Vetriani

    Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, United States
    For correspondence
    vetriani@marine.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8141-8438

Funding

National Science Foundation (MCB 04-56676)

  • Costantino Vetriani

National Aeronautics and Space Administration (NNX15AM18G)

  • Costantino Vetriani

National Science Foundation (OCE 03-27353)

  • Costantino Vetriani

National Science Foundation (MCB 08-43678)

  • Costantino Vetriani

National Science Foundation (OCE 09-37371)

  • Costantino Vetriani

National Science Foundation (OCE 11-24141)

  • Costantino Vetriani

National Science Foundation (MCB 15-17567)

  • Donato Giovannelli
  • Costantino Vetriani

National Science Foundation (OCE-1136727)

  • Stefan M Sievert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Version history

  1. Received: June 21, 2016
  2. Accepted: April 23, 2017
  3. Accepted Manuscript published: April 24, 2017 (version 1)
  4. Version of Record published: May 23, 2017 (version 2)

Copyright

© 2017, Giovannelli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,484
    views
  • 572
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Donato Giovannelli
  2. Stefan M Sievert
  3. Michael Hügler
  4. Stephanie Markert
  5. Dörte Becher
  6. Thomas Schweder
  7. Costantino Vetriani
(2017)
Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans
eLife 6:e18990.
https://doi.org/10.7554/eLife.18990

Share this article

https://doi.org/10.7554/eLife.18990

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.