1. Neuroscience
Download icon

Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior

Research Article
  • Cited 15
  • Views 1,809
  • Annotations
Cite this article as: eLife 2016;5:e19021 doi: 10.7554/eLife.19021

Abstract

Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of the C. elegans nervous system in response to thermal stimuli. A single pass of the screening procedure can identify much of the previously reported thermosensory circuitry as well as identify several unreported thermosensory neurons. Among the newly discovered neural functions, we investigated the role of the AWCOFF neuron in thermal nociception. Combining functional calcium imaging and behavioral assays, we show that AWCOFF is essential for avoidance behavior following noxious heat stimulation by modifying the forward-to-reversal behavioral transition rate. We also show that the AWCOFF signals adapt to repeated noxious thermal stimuli and quantify the corresponding behavioral adaptation.

Article and author information

Author details

  1. Ippei Kotera

    Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nhat Anh Tran

    Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Donald Fu

    Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Jimmy HJ Kim

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jarlath D Byrne Rodgers

    Donnelly Centre,, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5395-9950
  6. William S Ryu

    Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    willryu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0350-7507

Funding

Natural Sciences and Engineering Research Council of Canada

  • Jarlath D Byrne Rodgers
  • William S Ryu

Human Frontier Science Program

  • Ippei Kotera
  • Nhat Anh Tran
  • Donald Fu
  • William S Ryu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Publication history

  1. Received: June 21, 2016
  2. Accepted: November 14, 2016
  3. Accepted Manuscript published: November 16, 2016 (version 1)
  4. Version of Record published: December 7, 2016 (version 2)

Copyright

© 2016, Kotera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,809
    Page views
  • 385
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shaun S Sanders et al.
    Research Article Updated

    The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.

    1. Genetics and Genomics
    2. Neuroscience
    Qiaochu Li et al.
    Research Article

    The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.