Molecular basis of sidekick-mediated cell-cell adhesion and specificity

  1. Kerry M Goodman
  2. Masahito Yamagata
  3. Xiangshu Jin
  4. Seetha Mannepalli
  5. Phinikoula S Katsamba
  6. Göran Ahlsén
  7. Alina P Sergeeva
  8. Barry Honig  Is a corresponding author
  9. Joshua R Sanes  Is a corresponding author
  10. Lawrence Shapiro  Is a corresponding author
  1. Columbia University, United States
  2. Harvard University, United States
  3. Michigan State University, United States

Abstract

Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1-4), arranged in a horseshoe conformation. These Ig1-4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1-4, with Ig1-2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions.

Article and author information

Author details

  1. Kerry M Goodman

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Masahito Yamagata

    Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8193-2931
  3. Xiangshu Jin

    Department of Chemistry, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Seetha Mannepalli

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Phinikoula S Katsamba

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Göran Ahlsén

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alina P Sergeeva

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Barry Honig

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    For correspondence
    bh6@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2480-6696
  9. Joshua R Sanes

    Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836
  10. Lawrence Shapiro

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    For correspondence
    shapiro@convex.hhmi.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9943-8819

Funding

National Institutes of Health

  • Lawrence Shapiro

Howard Hughes Medical Institute

  • Xiangshu Jin
  • Phinikoula S Katsamba
  • Alina P Sergeeva
  • Barry Honig

National Institutes of Health

  • Joshua R Sanes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Goodman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,950
    views
  • 597
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kerry M Goodman
  2. Masahito Yamagata
  3. Xiangshu Jin
  4. Seetha Mannepalli
  5. Phinikoula S Katsamba
  6. Göran Ahlsén
  7. Alina P Sergeeva
  8. Barry Honig
  9. Joshua R Sanes
  10. Lawrence Shapiro
(2016)
Molecular basis of sidekick-mediated cell-cell adhesion and specificity
eLife 5:e19058.
https://doi.org/10.7554/eLife.19058

Share this article

https://doi.org/10.7554/eLife.19058

Further reading

    1. Structural Biology and Molecular Biophysics
    Aya Matsui, Cathy Spangler ... Eric Gouaux
    Research Article

    Chemical synapses are the major sites of communication between neurons in the nervous system and mediate either excitatory or inhibitory signaling. At excitatory synapses, glutamate is the primary neurotransmitter and upon release from presynaptic vesicles, is detected by postsynaptic glutamate receptors, which include ionotropic AMPA and NMDA receptors. Here, we have developed methods to identify glutamatergic synapses in brain tissue slices, label AMPA receptors with small gold nanoparticles (AuNPs), and prepare lamella for cryo-electron tomography studies. The targeted imaging of glutamatergic synapses in the lamella is facilitated by fluorescent pre- and postsynaptic signatures, and the subsequent tomograms allow for the identification of key features of chemical synapses, including synaptic vesicles, the synaptic cleft, and AuNP-labeled AMPA receptors. These methods pave the way for imaging brain regions at high resolution, using unstained, unfixed samples preserved under near-native conditions.

    1. Structural Biology and Molecular Biophysics
    Augustus J Lowry, Pengfei Liang ... Yang Zhang
    Research Article

    The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure–function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.