Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans

  1. Huiling Tan  Is a corresponding author
  2. Alek Pogosyan
  3. Keyoumars Ashkan
  4. Alexander L Green
  5. Tipu Aziz
  6. Thomas Foltynie
  7. Patricia Limousin
  8. Ludvic Zrinzo
  9. Marwan Hariz
  10. Peter Brown
  1. University of Oxford, United Kingdom
  2. Kings College London, United Kingdom
  3. UCL Institute of Neurology, United Kingdom

Abstract

The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55-90 Hz) and beta (13-30 Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces.

Article and author information

Author details

  1. Huiling Tan

    Nuffield Department of Clinical Neuroscience; 2. Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    For correspondence
    huiling.tan@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8038-3029
  2. Alek Pogosyan

    Nuffield Department of Clinical Neuroscience; 2. Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Keyoumars Ashkan

    Department of Neurosurgery, Kings College Hospital, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander L Green

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tipu Aziz

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Foltynie

    Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Patricia Limousin

    Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ludvic Zrinzo

    Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marwan Hariz

    Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter Brown

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5201-3044

Funding

European Commission (FP7-ICT-610391)

  • Huiling Tan
  • Alek Pogosyan
  • Peter Brown

Medical Research Council (Unit Grant)

  • Huiling Tan
  • Alek Pogosyan
  • Peter Brown

National Institute for Health Research

  • Peter Brown

Oxford biomedical research centre

  • Peter Brown

Rosetrees Trust

  • Peter Brown

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish was obtained from patients before they took part in the study, which was approved by Oxfordshire Research Ethics Committee.

Copyright

© 2016, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,934
    views
  • 465
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huiling Tan
  2. Alek Pogosyan
  3. Keyoumars Ashkan
  4. Alexander L Green
  5. Tipu Aziz
  6. Thomas Foltynie
  7. Patricia Limousin
  8. Ludvic Zrinzo
  9. Marwan Hariz
  10. Peter Brown
(2016)
Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans
eLife 5:e19089.
https://doi.org/10.7554/eLife.19089

Share this article

https://doi.org/10.7554/eLife.19089

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.