Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans
Abstract
The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55-90 Hz) and beta (13-30 Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces.
Article and author information
Author details
Funding
European Commission (FP7-ICT-610391)
- Huiling Tan
- Alek Pogosyan
- Peter Brown
Medical Research Council (Unit Grant)
- Huiling Tan
- Alek Pogosyan
- Peter Brown
National Institute for Health Research
- Peter Brown
Oxford biomedical research centre
- Peter Brown
Rosetrees Trust
- Peter Brown
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent and consent to publish was obtained from patients before they took part in the study, which was approved by Oxfordshire Research Ethics Committee.
Copyright
© 2016, Tan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,959
- views
-
- 470
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.