1. Plant Biology
Download icon

Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

  1. Heather M Meyer
  2. José Teles
  3. Pau Formosa-Jordan
  4. Yassin Refahi
  5. Rita San- Bento
  6. Gwyneth Ingram
  7. Henrik Jönsson  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  9. Adrienne HK Roeder  Is a corresponding author
  1. Cornell University, United States
  2. University of Cambridge, United Kingdom
  3. Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, France
Research Article
  • Cited 32
  • Views 5,192
  • Annotations
Cite this article as: eLife 2017;6:e19131 doi: 10.7554/eLife.19131

Abstract

Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process.

Article and author information

Author details

  1. Heather M Meyer

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. José Teles

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pau Formosa-Jordan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3005-597X
  4. Yassin Refahi

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6136-608X
  5. Rita San- Bento

    Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Gwyneth Ingram

    Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Henrik Jönsson

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    Henrik.Jonsson@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2340-588X
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943
  9. Adrienne HK Roeder

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    ahr75@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6685-2984

Funding

National Science Foundation (IOS-1553030)

  • Adrienne HK Roeder

Gatsby Charitable Foundation (GAT3272/GLC)

  • James CW Locke

Swedish Research Council (VR2013:4632)

  • Henrik Jönsson

Herchel Smith Foundation

  • José Teles

National Science Foundation (IOS-1256733)

  • Adrienne HK Roeder

Gatsby Charitable Foundation (GAT3395/PR4)

  • Henrik Jönsson

Herchel Smith Foundation

  • Pau Formosa-Jordan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Publication history

  1. Received: June 26, 2016
  2. Accepted: January 31, 2017
  3. Accepted Manuscript published: February 1, 2017 (version 1)
  4. Version of Record published: March 2, 2017 (version 2)

Copyright

© 2017, Meyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,192
    Page views
  • 1,104
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Plant Biology
    Vesa Havurinne, Esa Tyystjärvi
    Research Article Updated

    Sacoglossan sea slugs are able to maintain functional chloroplasts inside their own cells, and mechanisms that allow preservation of the chloroplasts are unknown. We found that the slug Elysia timida induces changes to the photosynthetic light reactions of the chloroplasts it steals from the alga Acetabularia acetabulum. Working with a large continuous laboratory culture of both the slugs (>500 individuals) and their prey algae, we show that the plastoquinone pool of slug chloroplasts remains oxidized, which can suppress reactive oxygen species formation. Slug chloroplasts also rapidly build up a strong proton-motive force upon a dark-to-light transition, which helps them to rapidly switch on photoprotective non-photochemical quenching of excitation energy. Finally, our results suggest that chloroplasts inside E. timida rely on oxygen-dependent electron sinks during rapid changes in light intensity. These photoprotective mechanisms are expected to contribute to the long-term functionality of the chloroplasts inside the slugs.

    1. Cell Biology
    2. Plant Biology
    Paulo Cartaxana, Sónia Cruz
    Insight

    Sea slugs increase the longevity of the chloroplasts they steal from algae by limiting the harmful side-effects of photosynthesis.