Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

  1. Heather M Meyer
  2. José Teles
  3. Pau Formosa-Jordan
  4. Yassin Refahi
  5. Rita San- Bento
  6. Gwyneth Ingram
  7. Henrik Jönsson  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  9. Adrienne HK Roeder  Is a corresponding author
  1. Cornell University, United States
  2. University of Cambridge, United Kingdom
  3. Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, France

Abstract

Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Heather M Meyer

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. José Teles

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pau Formosa-Jordan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3005-597X
  4. Yassin Refahi

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6136-608X
  5. Rita San- Bento

    Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Gwyneth Ingram

    Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Henrik Jönsson

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    Henrik.Jonsson@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2340-588X
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943
  9. Adrienne HK Roeder

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    ahr75@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6685-2984

Funding

National Science Foundation (IOS-1553030)

  • Adrienne HK Roeder

Gatsby Charitable Foundation (GAT3272/GLC)

  • James CW Locke

Swedish Research Council (VR2013:4632)

  • Henrik Jönsson

Herchel Smith Foundation

  • José Teles

National Science Foundation (IOS-1256733)

  • Adrienne HK Roeder

Gatsby Charitable Foundation (GAT3395/PR4)

  • Henrik Jönsson

Herchel Smith Foundation

  • Pau Formosa-Jordan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Publication history

  1. Received: June 26, 2016
  2. Accepted: January 31, 2017
  3. Accepted Manuscript published: February 1, 2017 (version 1)
  4. Version of Record published: March 2, 2017 (version 2)

Copyright

© 2017, Meyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,133
    Page views
  • 1,205
    Downloads
  • 46
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heather M Meyer
  2. José Teles
  3. Pau Formosa-Jordan
  4. Yassin Refahi
  5. Rita San- Bento
  6. Gwyneth Ingram
  7. Henrik Jönsson
  8. James CW Locke
  9. Adrienne HK Roeder
(2017)
Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal
eLife 6:e19131.
https://doi.org/10.7554/eLife.19131

Further reading

    1. Ecology
    2. Plant Biology
    Yaara Oppenheimer-Shaanan et al.
    Research Article

    Root exudates are thought to play an important role in plant-microbial interactions. In return for nutrition, soil bacteria can increase the bioavailability of soil nutrients. However, root exudates typically decrease in situations such as drought, calling into question the efficacy of solvation and bacteria-dependent mineral uptake in such stress. Here we tested the hypothesis of exudate-driven microbial priming on Cupressus saplings grown in forest soil in custom-made rhizotron boxes. A 1-month imposed drought and concomitant inoculations with a mix of Bacillus subtilis and Pseudomonas stutzeri, bacteria species isolated from the forest soil, were applied using factorial design. Direct bacteria counts and visualization by confocal microscopy showed that both bacteria associated with Cupressus Interestingly, root exudation rates increased 2.3-fold with bacteria under drought, as well as irrigation. Forty four metabolites in exudates were significantly different in concentration between irrigated and drought trees, including phenolic acid compounds and quinate. When adding these metabolites as carbon and nitrogen sources to bacterial cultures of both bacterial species, 8 of 9 metabolites stimulated bacterial growth. Importantly, soil phosphorous bioavailability was maintained only in inoculated trees, mitigating drought-induced decrease in leaf phosphorus and iron. Our observations of increased root exudation rate when drought and inoculation regimes were combined, support the idea of root recruitment of beneficial bacteria, especially under water stress.

    1. Plant Biology
    Jeffrey C Berry et al.
    Tools and Resources

    Environmental variability poses a major challenge to any field study. Researchers attempt to mitigate this challenge through replication. Thus, the ability to detect experimental signals is determined by the degree of replication and the amount of environmental variation, noise, within the experimental system. A major source of noise in field studies comes from the natural heterogeneity of soil properties which create microtreatments throughout the field. In addition, the variation within different soil properties is often nonrandomly distributed across a field. We explore this challenge through a sorghum field trial dataset with accompanying plant, microbiome, and soil property data. Diverse sorghum genotypes and two watering regimes were applied in a split-plot design. We describe a process of identifying, estimating, and controlling for the effects of spatially distributed soil properties on plant traits and microbial communities using minimal degrees of freedom. Importantly, this process provides a method with which sources of environmental variation in field data can be identified and adjusted, improving our ability to resolve effects of interest and to quantify subtle phenotypes.