1. Physics of Living Systems
Download icon

Mapping out Min protein patterns in fully confined fluidic chambers

  1. Yaron Caspi  Is a corresponding author
  2. Cees Dekker  Is a corresponding author
  1. Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
Research Article
  • Cited 27
  • Views 1,516
  • Annotations
Cite this article as: eLife 2016;5:e19271 doi: 10.7554/eLife.19271

Abstract

The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems.

Article and author information

Author details

  1. Yaron Caspi

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    For correspondence
    y.caspi@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0328-0186
  2. Cees Dekker

    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
    For correspondence
    C.Dekker@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.

Funding

Netherlands Organization for Scientific Research (Frontiers of Nanoscience program)

  • Yaron Caspi
  • Cees Dekker

European Research Council (No. 669598)

  • Yaron Caspi
  • Cees Dekker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Sprinzak, Tel Aviv University, Israel

Publication history

  1. Received: June 30, 2016
  2. Accepted: November 24, 2016
  3. Accepted Manuscript published: November 25, 2016 (version 1)
  4. Version of Record published: January 5, 2017 (version 2)

Copyright

© 2016, Caspi & Dekker

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    Page views
  • 393
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    Nikola Ojkic et al.
    Short Report Updated
    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Alberto Brandariz-Nuñez et al.
    Research Article Updated