Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane

  1. Pascal Weber
  2. Helena Batoulis
  3. Kerstin Rink
  4. Stefan Dahlhoff
  5. Kerstin Pinkwart
  6. Thomas Söllner
  7. Thorsten Lang  Is a corresponding author
  1. University of Bonn, Germany
  2. Heidelberg University Biochemistry Center, Germany

Abstract

The SNAREs SNAP25 and SNAP23 are proteins that are cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins to the target membrane. In experiments with rat neuroendocrine cells, we find that a few polybasic amino acids in the cysteine rich region are essential for plasma membrane targeting. Reconstitution of membrane-protein binding in a liposome assay shows that the mechanism involves protein electrostatics between polybasic amino acid residues and anionic lipids like phosphoinositides that play a primary role in these interactions. Hence, we identify an electrostatic anchoring mechanism underlying initial contact establishment of SNARE proteins which then subsequently become palmitoylated at the plasma membrane.

Article and author information

Author details

  1. Pascal Weber

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Helena Batoulis

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Kerstin Rink

    Heidelberg University Biochemistry Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Dahlhoff

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Kerstin Pinkwart

    Heidelberg University Biochemistry Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Söllner

    Heidelberg University Biochemistry Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Thorsten Lang

    Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    For correspondence
    thorsten.lang@uni-bonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9128-0137

Funding

Deutsche Forschungsgemeinschaft (TRR83)

  • Thomas Söllner

Deutsche Forschungsgemeinschaft (TRR83)

  • Thorsten Lang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,378
    views
  • 520
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pascal Weber
  2. Helena Batoulis
  3. Kerstin Rink
  4. Stefan Dahlhoff
  5. Kerstin Pinkwart
  6. Thomas Söllner
  7. Thorsten Lang
(2017)
Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane
eLife 6:e19394.
https://doi.org/10.7554/eLife.19394

Share this article

https://doi.org/10.7554/eLife.19394

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.