Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli

  1. Jean-Emmanuel Hugonnet
  2. Dominique Mengin-Lecreulx
  3. Alejandro Monton
  4. Tanneke den Blaauwen
  5. Etienne Carbonnelle
  6. Carole Veckerlé
  7. Yves Brun
  8. Michael van Nieuwenhze
  9. Christiane Bouchier
  10. Kuyek Tu
  11. Louis B Rice
  12. Michel Arthur  Is a corresponding author
  1. INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, France
  2. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
  3. University of Amsterdam, Netherlands
  4. Indiana University, United States
  5. Institut Pasteur, France
  6. Brown University, United States

Abstract

The target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jean-Emmanuel Hugonnet

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominique Mengin-Lecreulx

    Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alejandro Monton

    Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Tanneke den Blaauwen

    Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Etienne Carbonnelle

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Carole Veckerlé

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Yves Brun

    Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael van Nieuwenhze

    Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christiane Bouchier

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Kuyek Tu

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Louis B Rice

    Rhode Island Hospital, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michel Arthur

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    For correspondence
    michel.arthur@crc.jussieu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1007-636X

Funding

National Institute of Allergy and Infectious Diseases (RO1 307 AI046626)

  • Louis B Rice
  • Michel Arthur

Joint Program Initiative on Antimicrobial Research (ZonMW project 60-60900-98-207)

  • Alejandro Monton

Joint Program Initiative on Antimicrobial Research (NAPCLI)

  • Jean-Emmanuel Hugonnet
  • Alejandro Monton
  • Tanneke den Blaauwen
  • Michel Arthur

National Institutes of Health (GM113172)

  • Michael van Nieuwenhze

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,039
    views
  • 1,095
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Emmanuel Hugonnet
  2. Dominique Mengin-Lecreulx
  3. Alejandro Monton
  4. Tanneke den Blaauwen
  5. Etienne Carbonnelle
  6. Carole Veckerlé
  7. Yves Brun
  8. Michael van Nieuwenhze
  9. Christiane Bouchier
  10. Kuyek Tu
  11. Louis B Rice
  12. Michel Arthur
(2016)
Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli
eLife 5:e19469.
https://doi.org/10.7554/eLife.19469

Share this article

https://doi.org/10.7554/eLife.19469

Further reading

    1. Microbiology and Infectious Disease
    Michi Miura, Naho Kiuchi ... Mineki Saito
    Research Article

    Influenza A virus transcribes viral mRNAs from the eight segmented viral genome when it infects. The kinetics of viral transcription, nuclear export of viral transcripts, and their potential variation between the eight segments are poorly characterised. Here, we introduce a statistical framework for estimating the nuclear export rate of each segment from a snapshot of in situ mRNA localisation. This exploits the cell-to-cell variation at a single time point observed by an imaging-based in situ transcriptome assay. Using our model, we revealed the variation in the mRNA nuclear export rate of the eight viral segments. Notably, the two influenza viral antigens hemagglutinin and neuraminidase were the slowest segments in the nuclear export, suggesting the possibility that influenza A virus uses the nuclear retention of viral transcripts to delay the expression of antigenic molecules. Our framework presented in this study can be widely used for investigating the nuclear retention of nascent transcripts produced in a transcription burst.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Nicole Herrmann May, Anh Cao ... Tom Beneke
    Research Advance

    The ability to analyze the function of all genes in a genome is highly desirable, yet challenging in Leishmania due to a repetitive genome, limited DNA repair mechanisms, and lack of RNA interference in most species. While our introduction of a cytosine base editor (CBE) demonstrated potential to overcome these limitations (Engstler and Beneke, 2023), challenges remained, including low transfection efficiency, variable editing rates across species, parasite growth effects, and competition between deleterious and non-deleterious mutations. Here, we present an optimized approach addressing these issues. We identified a T7 RNAP promoter variant ensuring high editing rates across Leishmania species without compromising growth. A revised CBE single-guide RNAs (sgRNAs) scoring system was developed to prioritize STOP codon generation. Additionally, a triple-expression construct was created for stable integration of CBE sgRNA expression cassettes into a Leishmania safe harbor locus using AsCas12a ultra-mediated DNA double-strand breaks, increasing transfection efficiency by ~400-fold to 1 transfectant per 70 transfected cells. Using this improved system for a small-scale proof-of-principle pooled screen, we successfully confirmed the essential and fitness-associated functions of CK1.2, CRK2, CRK3, AUK1/AIRK, TOR1, IFT88, IFT139, IFT140, and RAB5A in Leishmania mexicana, demonstrating a significant improvement over our previous method. Lastly, we show the utility of co-expressing AsCas12a ultra, T7 RNAP, and CBE for hybrid CRISPR gene replacement and base editing within the same cell line. Overall, these improvements will broaden the range of possible gene editing applications in Leishmania species and will enable a variety of loss-of-function screens in the near future.