1. Microbiology and Infectious Disease
Download icon

Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli

  1. Jean-Emmanuel Hugonnet
  2. Dominique Mengin-Lecreulx
  3. Alejandro Monton
  4. Tanneke den Blaauwen
  5. Etienne Carbonnelle
  6. Carole Veckerlé
  7. Yves Brun
  8. Michael van Nieuwenhze
  9. Christiane Bouchier
  10. Kuyek Tu
  11. Louis B Rice
  12. Michel Arthur  Is a corresponding author
  1. INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, France
  2. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
  3. University of Amsterdam, Netherlands
  4. Indiana University, United States
  5. Institut Pasteur, France
  6. Brown University, United States
Research Article
  • Cited 71
  • Views 3,323
  • Annotations
Cite this article as: eLife 2016;5:e19469 doi: 10.7554/eLife.19469

Abstract

The target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Jean-Emmanuel Hugonnet

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominique Mengin-Lecreulx

    Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alejandro Monton

    Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Tanneke den Blaauwen

    Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Etienne Carbonnelle

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Carole Veckerlé

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Yves Brun

    Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael van Nieuwenhze

    Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christiane Bouchier

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Kuyek Tu

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Louis B Rice

    Rhode Island Hospital, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michel Arthur

    INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
    For correspondence
    michel.arthur@crc.jussieu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1007-636X

Funding

National Institute of Allergy and Infectious Diseases (RO1 307 AI046626)

  • Louis B Rice
  • Michel Arthur

Joint Program Initiative on Antimicrobial Research (ZonMW project 60-60900-98-207)

  • Alejandro Monton

Joint Program Initiative on Antimicrobial Research (NAPCLI)

  • Jean-Emmanuel Hugonnet
  • Alejandro Monton
  • Tanneke den Blaauwen
  • Michel Arthur

National Institutes of Health (GM113172)

  • Michael van Nieuwenhze

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael S Gilmore, Harvard Medical School, United States

Publication history

  1. Received: July 8, 2016
  2. Accepted: October 20, 2016
  3. Accepted Manuscript published: October 21, 2016 (version 1)
  4. Version of Record published: November 1, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,323
    Page views
  • 871
    Downloads
  • 71
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Giulia Bandini et al.
    Research Article Updated

    Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.

    1. Microbiology and Infectious Disease
    Michael J Sheedlo et al.
    Research Article

    Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' Disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.