Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation

  1. Madhur S Dhingra
  2. Jean Artois
  3. Timothy P Robinson
  4. Catherine Linard
  5. Celia Chaiban
  6. Ioannis Xenarios
  7. Robin Engler
  8. Robin Liechti
  9. Dimitry Kuznetsov
  10. Xiangming Xiao
  11. Sophie Von Dobschuetz
  12. Filip Claes
  13. Scott H Newman  Is a corresponding author
  14. Gwenaëlle Dauphin  Is a corresponding author
  15. Marius Gilbert  Is a corresponding author
  1. Université Libre de Bruxelles, Belgium
  2. International Livestock Research Institute, Kenya
  3. Swiss Institute of Bioinformatics, Switzerland
  4. University of Oklahoma, United States
  5. Food and Agriculture Organization of the United Nations, Italy
  6. Regional Office for Asia and the Pacific, Thailand
  7. Food and Agriculture Organization of the United Nations, Vietnam

Abstract

Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Madhur S Dhingra

    Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean Artois

    Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy P Robinson

    Livestock Systems and Environment, International Livestock Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4266-963X
  4. Catherine Linard

    Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Celia Chaiban

    Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Ioannis Xenarios

    Swiss-Prot & Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Robin Engler

    Swiss-Prot & Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Robin Liechti

    Swiss-Prot & Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Dimitry Kuznetsov

    Swiss-Prot & Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiangming Xiao

    Department of Microbiology and Plant Biology, University of Oklahoma, Norman, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sophie Von Dobschuetz

    Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Filip Claes

    Emergency Center for Transboundary Animal Diseases, Regional Office for Asia and the Pacific, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  13. Scott H Newman

    Emergency Center for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Hanoi, Vietnam
    For correspondence
    scott.newman@fao.org
    Competing interests
    The authors declare that no competing interests exist.
  14. Gwenaëlle Dauphin

    Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
    For correspondence
    Gwenaelle.Dauphin@fao.org
    Competing interests
    The authors declare that no competing interests exist.
  15. Marius Gilbert

    Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
    For correspondence
    marius.gilbert@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3708-3359

Funding

National Institutes of Health (1R01AI101028-02A1)

  • Madhur S Dhingra
  • Jean Artois
  • Xiangming Xiao
  • Marius Gilbert

United States Agency for International Development (Emerging Pandemic Threats program)

  • Scott H Newman

Biotechnology and Biological Sciences Research Council (BB/L019019/1)

  • Timothy P Robinson

Fonds De La Recherche Scientifique - FNRS (PDR T.0073.13)

  • Catherine Linard
  • Marius Gilbert

Medical Research Council (ESEI UrbanZoo (G1100783/1))

  • Timothy P Robinson

CGIAR (Research Programs on Agriculture for Nutrition and Health (A4NH) and Livestock)

  • Timothy P Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Dhingra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,500
    views
  • 791
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madhur S Dhingra
  2. Jean Artois
  3. Timothy P Robinson
  4. Catherine Linard
  5. Celia Chaiban
  6. Ioannis Xenarios
  7. Robin Engler
  8. Robin Liechti
  9. Dimitry Kuznetsov
  10. Xiangming Xiao
  11. Sophie Von Dobschuetz
  12. Filip Claes
  13. Scott H Newman
  14. Gwenaëlle Dauphin
  15. Marius Gilbert
(2016)
Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation
eLife 5:e19571.
https://doi.org/10.7554/eLife.19571

Share this article

https://doi.org/10.7554/eLife.19571

Further reading

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.