Structure in the variability of the basic reproductive number (R0) for Zika epidemics in the Pacific islands

  1. Clara Champagne  Is a corresponding author
  2. David Georges Salthouse
  3. Richard Paul
  4. Van-Mai Cao-Lormeau
  5. Benjamin Roche
  6. Bernard Cazelles  Is a corresponding author
  1. IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, France
  2. Institut Pasteur, France
  3. Institut Louis Malardé, French Polynesia
  4. International Center for Mathematical and Computational Modeling of Complex Systems, UMI 209 UPMC/IRD, France

Abstract

Before the outbreak that reached the Americas in 2015, Zika virus (ZIKV) circulated in Asia and the Pacific: these past epidemics can be highly informative on the key parameters driving virus transmission, such as the basic reproduction number (R0). We compare two compartmental models with different mosquito representations, using surveillance and seroprevalence data for several ZIKV outbreaks in Pacific islands (Yap, Micronesia 2007, Tahiti and Moorea, French Polynesia 2013-2014, New Caledonia 2014). Models are estimated in a stochastic framework with recent Bayesian techniques. R0 for the Pacific ZIKV epidemics is estimated between 1.5 and 4.1, the smallest islands displaying higher and more variable values. This relatively low range of R0 suggests that intervention strategies developed for other flaviviruses should enable as, if not more effective control of ZIKV. Our study also highlights the importance of seroprevalence data for precise quantitative analysis of pathogen propagation, to design prevention and control strategies.

Article and author information

Author details

  1. Clara Champagne

    IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
    For correspondence
    champagn@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0369-6758
  2. David Georges Salthouse

    IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Paul

    Unité de Génétique Fonctionnelle des Maladies Infectieuses, Department of Genomes and Genetics, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Van-Mai Cao-Lormeau

    Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Roche

    International Center for Mathematical and Computational Modeling of Complex Systems, UMI 209 UPMC/IRD, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Bernard Cazelles

    IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
    For correspondence
    cazelles@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7972-361X

Funding

Centre National de la Recherche Scientifique (Pepiniere interdisciplinaire Eco-Evo-Devo)

  • Clara Champagne
  • David Georges Salthouse
  • Bernard Cazelles

European Commission (Seventh Framework Program [FP7 2007-2013] for the DENFREE project under Grant Agreement 282 348)

  • Clara Champagne
  • David Georges Salthouse
  • Richard Paul
  • Van-Mai Cao-Lormeau
  • Bernard Cazelles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Champagne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,567
    views
  • 373
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clara Champagne
  2. David Georges Salthouse
  3. Richard Paul
  4. Van-Mai Cao-Lormeau
  5. Benjamin Roche
  6. Bernard Cazelles
(2016)
Structure in the variability of the basic reproductive number (R0) for Zika epidemics in the Pacific islands
eLife 5:e19874.
https://doi.org/10.7554/eLife.19874

Share this article

https://doi.org/10.7554/eLife.19874

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.