Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

  1. Daniel Šmít
  2. Coralie Fouquet
  3. Frédéric Pincet
  4. Martin Zapotocky  Is a corresponding author
  5. Alain Trembleau  Is a corresponding author
  1. Czech Academy of Sciences, Czech Republic
  2. Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France
  3. Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, France

Abstract

While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behaviour that regulates their fasciculation. We carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.

Article and author information

Author details

  1. Daniel Šmít

    Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Coralie Fouquet

    Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Frédéric Pincet

    Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Zapotocky

    Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    zapotocky@biomed.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain Trembleau

    Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.trembleau@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8290-0795

Funding

Université Pierre et Marie Curie

  • Frédéric Pincet
  • Alain Trembleau

Czech Science Foundation (14-16755S)

  • Martin Zapotocky

Institut National de la Santé et de la Recherche Médicale

  • Alain Trembleau

Centre National de la Recherche Scientifique

  • Frédéric Pincet
  • Alain Trembleau

Agence Nationale de la Recherche (ANR-2010-BLAN-1401-01)

  • Alain Trembleau

National Institutes of Health (5R01DC012441)

  • Alain Trembleau

First Faculty of Medicine at Charles University (GAUK 396213)

  • Martin Zapotocky

Agence Nationale de la Recherche (ANR-11-IDEX-0004-02)

  • Alain Trembleau

Barrande Czech-French Cooperation program (7AMB12FR002)

  • Alain Trembleau

Czech Academy of Sciences (RVO#67985823)

  • Martin Zapotocky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures involving animals and their care were conducted according to European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals.

Copyright

© 2017, Šmít et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,951
    views
  • 467
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Šmít
  2. Coralie Fouquet
  3. Frédéric Pincet
  4. Martin Zapotocky
  5. Alain Trembleau
(2017)
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
eLife 6:e19907.
https://doi.org/10.7554/eLife.19907

Share this article

https://doi.org/10.7554/eLife.19907

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.