Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

  1. Daniel Šmít
  2. Coralie Fouquet
  3. Frédéric Pincet
  4. Martin Zapotocky  Is a corresponding author
  5. Alain Trembleau  Is a corresponding author
  1. Czech Academy of Sciences, Czech Republic
  2. Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France
  3. Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, France

Abstract

While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behaviour that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.

Article and author information

Author details

  1. Daniel Šmít

    Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Coralie Fouquet

    Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Frédéric Pincet

    Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Zapotocky

    Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    zapotocky@biomed.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain Trembleau

    Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.trembleau@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8290-0795

Funding

Université Pierre et Marie Curie

  • Frédéric Pincet
  • Alain Trembleau

Czech Science Foundation (14-16755S)

  • Martin Zapotocky

Institut National de la Santé et de la Recherche Médicale

  • Alain Trembleau

Centre National de la Recherche Scientifique

  • Frédéric Pincet
  • Alain Trembleau

Agence Nationale de la Recherche (ANR-2010-BLAN-1401-01)

  • Alain Trembleau

National Institutes of Health (5R01DC012441)

  • Alain Trembleau

First Faculty of Medicine at Charles University (GAUK 396213)

  • Martin Zapotocky

Agence Nationale de la Recherche (ANR-11-IDEX-0004-02)

  • Alain Trembleau

Barrande Czech-French Cooperation program (7AMB12FR002)

  • Alain Trembleau

Czech Academy of Sciences (RVO#67985823)

  • Martin Zapotocky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: Procedures involving animals and their care were conducted according to European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals.

Version history

  1. Received: July 25, 2016
  2. Accepted: April 4, 2017
  3. Accepted Manuscript published: April 19, 2017 (version 1)
  4. Accepted Manuscript updated: April 24, 2017 (version 2)
  5. Version of Record published: June 20, 2017 (version 3)

Copyright

© 2017, Šmít et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,841
    views
  • 453
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Šmít
  2. Coralie Fouquet
  3. Frédéric Pincet
  4. Martin Zapotocky
  5. Alain Trembleau
(2017)
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
eLife 6:e19907.
https://doi.org/10.7554/eLife.19907

Share this article

https://doi.org/10.7554/eLife.19907

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.