Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates

  1. Martin L Basch
  2. Rogers M Brown
  3. Hsin-I Jen
  4. Fatih Semerci
  5. Frederic Depreux
  6. Renée Edlund
  7. Hongyuan Zhang
  8. Christine R Norton
  9. Thomas Gridley
  10. Susan E Cole
  11. Angelika Doetzlhofer
  12. Mirjana Maletic-Savatic
  13. Neil Segil
  14. Andrew K Groves  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Baylor College of Medicine, United States
  3. Rosalind Franklin University of Medicine and Science, United States
  4. Maine Medical Center Research Institute, United States
  5. The Ohio State University, United States
  6. Johns Hopkins University, School of Medicine, United States
  7. Keck School of Medicine, University of Southern California, United States

Abstract

The signals that induce the organ of Corti and define its boundaries in the cochlea are poorly understood. We show that two Notch modifiers, Lfng and Mfng, are transiently expressed precisely at the neural boundary of the organ of Corti. Cre-Lox fate mapping shows this region gives rise to inner hair cells and their associated inner phalangeal cells. Mutation of Lfng and Mfng disrupts this boundary, producing unexpected duplications of inner hair cells and inner phalangeal cells. This phenotype is mimicked by other mouse mutants or pharmacological treatments that lower but not abolish Notch signaling. However, strong disruption of Notch signaling causes a very different result, generating many ectopic hair cells at the expense of inner phalangeal cells. Our results show that Notch signaling is finely calibrated in the cochlea to produce precisely tuned levels of signaling that first set the boundary of the organ of Corti and later regulate hair cell development.

Article and author information

Author details

  1. Martin L Basch

    Department of Otolaryngology Head and Neck Surgery, University Hospitals, Case Medical Center, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rogers M Brown

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hsin-I Jen

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fatih Semerci

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Frederic Depreux

    Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Renée Edlund

    Program in Developmental Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hongyuan Zhang

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christine R Norton

    Maine Medical Center Research Institute, Scarborough, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Gridley

    Maine Medical Center Research Institute, Scarborough, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Susan E Cole

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Angelika Doetzlhofer

    Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mirjana Maletic-Savatic

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Neil Segil

    Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrew K Groves

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    akgroves@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0784-7998

Funding

National Institute on Deafness and Other Communication Disorders (NIH DC006185)

  • Andrew K Groves

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments in this study were carried out in accordance with the Institutional Animal Care and Use Committee protocol (AN4956) at Baylor College of Medicine.

Version history

  1. Received: July 22, 2016
  2. Accepted: December 12, 2016
  3. Accepted Manuscript published: December 14, 2016 (version 1)
  4. Version of Record published: January 4, 2017 (version 2)

Copyright

© 2016, Basch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,794
    views
  • 557
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin L Basch
  2. Rogers M Brown
  3. Hsin-I Jen
  4. Fatih Semerci
  5. Frederic Depreux
  6. Renée Edlund
  7. Hongyuan Zhang
  8. Christine R Norton
  9. Thomas Gridley
  10. Susan E Cole
  11. Angelika Doetzlhofer
  12. Mirjana Maletic-Savatic
  13. Neil Segil
  14. Andrew K Groves
(2016)
Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates
eLife 5:e19921.
https://doi.org/10.7554/eLife.19921

Share this article

https://doi.org/10.7554/eLife.19921

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.