Abstract

Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.

Article and author information

Author details

  1. Graham J Britton

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Rachel Ambler

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6647-4116
  3. Danielle J Clark

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Elaine V Hill

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Helen M Tunbridge

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kerrie E McNally

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Bronwen R Burton

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Philomena Butterweck

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Catherine Sabatos-Peyton

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Lea A Hampton-O'Neil

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9665-170X
  11. Paul Verkade

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Christoph Wuelfing

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    For correspondence
    Christoph.Wuelfing@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  13. David Cameron Wraith

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    d.wraith@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2147-5614

Funding

European Research Council (PCIG-GA-2012-321554)

  • Christoph Wuelfing

Multiple Sclerosis Society (900/08)

  • Catherine Sabatos-Peyton

Wellcome Trust (102387/Z/13/Z)

  • Rachel Ambler
  • Helen M Tunbridge
  • Kerrie E McNally
  • Lea A Hampton-O'Neil

Wellcome Trust (091074/Z/09/Z)

  • Elaine V Hill
  • David Cameron Wraith

University of Bristol (PhD studentship)

  • Danielle J Clark

Wellcome Trust (086779/Z/08/A)

  • Graham J Britton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Animal experimentation: All animal experiments were carried out under the UK Home Office Project Licence number 30/2705 held by David Wraith and the study was approved by the University of Bristol ethical review committee.

Version history

  1. Received: July 24, 2016
  2. Accepted: January 22, 2017
  3. Accepted Manuscript published: January 23, 2017 (version 1)
  4. Accepted Manuscript updated: January 31, 2017 (version 2)
  5. Version of Record published: February 15, 2017 (version 3)
  6. Version of Record updated: April 5, 2017 (version 4)

Copyright

© 2017, Britton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,505
    views
  • 624
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Graham J Britton
  2. Rachel Ambler
  3. Danielle J Clark
  4. Elaine V Hill
  5. Helen M Tunbridge
  6. Kerrie E McNally
  7. Bronwen R Burton
  8. Philomena Butterweck
  9. Catherine Sabatos-Peyton
  10. Lea A Hampton-O'Neil
  11. Paul Verkade
  12. Christoph Wuelfing
  13. David Cameron Wraith
(2017)
PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton
eLife 6:e20003.
https://doi.org/10.7554/eLife.20003

Share this article

https://doi.org/10.7554/eLife.20003

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.