1. Neuroscience
Download icon

Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models

  1. James J Bonaiuto  Is a corresponding author
  2. Archy O de Berker
  3. Sven Bestmann
  1. University College London, United Kingdom
Research Article
  • Cited 13
  • Views 1,264
  • Annotations
Cite this article as: eLife 2016;5:e20047 doi: 10.7554/eLife.20047

Abstract

Animals and humans have a tendency to repeat recent choices, a phenomenon known as choice hysteresis. The mechanism for this choice bias remains unclear. Using an established, biophysically informed model of a competitive attractor network for decision making, we found that decaying tail activity from the previous trial caused choice hysteresis, especially during difficult trials, and accurately predicted human perceptual choices. In the model, choice variability could be directionally altered through amplification or dampening of post-trial activity decay through simulated depolarizing or hyperpolarizing network stimulation. An analogous intervention using transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (dlPFC) yielded a close match between model predictions and experimental results: net soma depolarizing currents increased choice hysteresis, while hyperpolarizing currents suppressed it. Residual activity in competitive attractor networks within dlPFC may thus give rise to biases in perceptual choices, which can be directionally controlled through non-invasive brain stimulation.

Article and author information

Author details

  1. James J Bonaiuto

    Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
    For correspondence
    j.bonaiuto@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9165-4082
  2. Archy O de Berker

    Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3460-7172
  3. Sven Bestmann

    Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (260424)

  • James J Bonaiuto
  • Sven Bestmann

Medical Research Council

  • Archy O de Berker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was performed in accordance with institutional guidelines for experiments with humans, adhered to the principles of the Declaration of Helsinki and was approved by the UCL Research Ethics Committee (reference number 5833/001). Participants gave their informed written consent before participating.

Reviewing Editor

  1. Richard Ivry, University of California, Berkeley, United States

Publication history

  1. Received: August 4, 2016
  2. Accepted: December 19, 2016
  3. Accepted Manuscript published: December 22, 2016 (version 1)
  4. Version of Record published: January 18, 2017 (version 2)

Copyright

© 2016, Bonaiuto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,264
    Page views
  • 342
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Víctor J López-Madrona et al.
    Research Article Updated

    Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

    1. Neuroscience
    Kyle Jasmin et al.
    Research Article

    Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N=15) and controls (N=15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues, and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group, between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions, and suggest a compensatory mechanism.