1. Computational and Systems Biology
  2. Ecology
Download icon

A locally-blazed ant trail achieves efficient collective navigation despite limited information

  1. Ehud Fonio
  2. Yael Heyman
  3. Lucas Boczkowski
  4. Aviram Gelblum
  5. Adrian Kosowski
  6. Amos Korman  Is a corresponding author
  7. Ofer Feinerman  Is a corresponding author
  1. Department of Physics of complex systems, Israel
  2. Weizmann Institute of Science, Israel
  3. Institut de Recherche en Informatique Fondamentale, CNRS and University Paris Diderot, France
  4. Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, France
Research Article
  • Cited 22
  • Views 2,684
  • Annotations
Cite this article as: eLife 2016;5:e20185 doi: 10.7554/eLife.20185

Abstract

Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often fails to supply the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information.

Article and author information

Author details

  1. Ehud Fonio

    The Weizmann Institute of Science, Department of Physics of complex systems, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yael Heyman

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Boczkowski

    Institut de Recherche en Informatique Fondamentale, CNRS and University Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Aviram Gelblum

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian Kosowski

    Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amos Korman

    Institut de Recherche en Informatique Fondamentale, INRIA and University Paris Diderot, Paris, France
    For correspondence
    pandit@liafa.univ-paris-diderot.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Ofer Feinerman

    Department of Physics of complex systems, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    ofer.feinerman@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4145-0238

Funding

European Research Council (DBA-648032)

  • Amos Korman
  • Ofer Feinerman

Israel Science Foundation (833/15)

  • Ofer Feinerman

Narodowe Centrum Nauki (2015/17/B/ST6/01897)

  • Adrian Kosowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Russ Fernald, Stanford University, United States

Publication history

  1. Received: July 30, 2016
  2. Accepted: November 3, 2016
  3. Accepted Manuscript published: November 5, 2016 (version 1)
  4. Version of Record published: December 7, 2016 (version 2)

Copyright

© 2016, Fonio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,684
    Page views
  • 374
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Christopher P Mancuso et al.
    Research Article Updated

    Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel ‘niche flip’ mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.

    1. Computational and Systems Biology
    Michael S Lauer, Deepshikha Roychowdhury
    Research Article Updated

    Previous reports have described worsening inequalities of National Institutes of Health (NIH) funding. We analyzed Research Project Grant data through the end of Fiscal Year 2020, confirming worsening inequalities beginning at the time of the NIH budget doubling (1998–2003), while finding that trends in recent years have reversed for both investigators and institutions, but only to a modest degree. We also find that career-stage trends have stabilized, with equivalent proportions of early-, mid-, and late-career investigators funded from 2017 to 2020. The fraction of women among funded PIs continues to increase, but they are still not at parity. Analyses of funding inequalities show that inequalities for investigators, and to a lesser degree for institutions, have consistently been greater within groups (i.e. within groups by career stage, gender, race, and degree) than between groups.