Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis

  1. Christina Ernst
  2. Jeremy Pike
  3. Sarah J Aitken
  4. Hannah K Long
  5. Nils Eling
  6. Lovorka Stojic
  7. Michelle C Ward
  8. Frances Connor
  9. Tim F Rayner
  10. Margus Lukk
  11. Robert J Klose
  12. Claudia Kutter
  13. Duncan T Odom  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Oxford, United Kingdom
  3. Science for Life Laboratory, Sweden

Abstract

Most human aneuploidies originate maternally, due in part to the presence of highly stringent checkpoints during male meiosis. Indeed, male sterility is common among aneuploid mice used to study chromosomal abnormalities, and male germline transmission of exogenous DNA has been rarely reported. Here we show that despite aberrant testis architecture, males of the aneuploid Tc1 mouse strain produce viable sperm and transmit human chromosome 21 to create aneuploid offspring. In these offspring, we mapped transcription, transcriptional initiation, enhancer activity, non-methylated DNA and transcription factor binding in adult tissues. Remarkably, when compared with mice derived from female passage of human chromosome 21, the chromatin condensation during spermatogenesis and the extensive epigenetic reprogramming specific to male germline transmission resulted in almost indistinguishable patterns of transcriptional deployment. Our results reveal an unexpected tolerance of aneuploidy during mammalian spermatogenesis, and the surprisingly robust ability of mouse developmental machinery to accurately deploy an exogenous chromosome, regardless of germline transmission.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christina Ernst

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3569-2209
  2. Jeremy Pike

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Sarah J Aitken

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Hannah K Long

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Nils Eling

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Lovorka Stojic

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Michelle C Ward

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Frances Connor

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  9. Tim F Rayner

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  10. Margus Lukk

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  11. Robert J Klose

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8726-7888
  12. Claudia Kutter

    Science for Life Laboratory, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8047-0058
  13. Duncan T Odom

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    Duncan.Odom@cruk.cam.ac.uk
    Competing interests
    Duncan T Odom, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6201-5599

Funding

Cancer Research UK (A20412)

  • Christina Ernst
  • Sarah J Aitken
  • Nils Eling
  • Frances Connor
  • Tim F Rayner
  • Margus Lukk
  • Claudia Kutter
  • Duncan T Odom

European Research Council (615584)

  • Duncan T Odom

Wellcome (098024/Z/11/Z)

  • Robert J Klose

Wellcome (106563/Z/14/A)

  • Sarah J Aitken

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This investigation was approved by the Animal Welfare and Ethics Review Board and followed the Cambridge Institute guidelines for the use of animals in experimental studies under Home Office license PPL 70/7535.

Human subjects: Previously published human data from Ward et al. 2013 were used for comparisons in this study.

Copyright

© 2016, Ernst et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,575
    views
  • 464
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina Ernst
  2. Jeremy Pike
  3. Sarah J Aitken
  4. Hannah K Long
  5. Nils Eling
  6. Lovorka Stojic
  7. Michelle C Ward
  8. Frances Connor
  9. Tim F Rayner
  10. Margus Lukk
  11. Robert J Klose
  12. Claudia Kutter
  13. Duncan T Odom
(2016)
Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis
eLife 5:e20235.
https://doi.org/10.7554/eLife.20235

Share this article

https://doi.org/10.7554/eLife.20235

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.