Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis

  1. Christina Ernst
  2. Jeremy Pike
  3. Sarah J Aitken
  4. Hannah K Long
  5. Nils Eling
  6. Lovorka Stojic
  7. Michelle C Ward
  8. Frances Connor
  9. Tim F Rayner
  10. Margus Lukk
  11. Robert J Klose
  12. Claudia Kutter
  13. Duncan T Odom  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Oxford, United Kingdom
  3. Science for Life Laboratory, Sweden

Abstract

Most human aneuploidies originate maternally, due in part to the presence of highly stringent checkpoints during male meiosis. Indeed, male sterility is common among aneuploid mice used to study chromosomal abnormalities, and male germline transmission of exogenous DNA has been rarely reported. Here we show that despite aberrant testis architecture, males of the aneuploid Tc1 mouse strain produce viable sperm and transmit human chromosome 21 to create aneuploid offspring. In these offspring, we mapped transcription, transcriptional initiation, enhancer activity, non-methylated DNA and transcription factor binding in adult tissues. Remarkably, when compared with mice derived from female passage of human chromosome 21, the chromatin condensation during spermatogenesis and the extensive epigenetic reprogramming specific to male germline transmission resulted in almost indistinguishable patterns of transcriptional deployment. Our results reveal an unexpected tolerance of aneuploidy during mammalian spermatogenesis, and the surprisingly robust ability of mouse developmental machinery to accurately deploy an exogenous chromosome, regardless of germline transmission.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christina Ernst

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3569-2209
  2. Jeremy Pike

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Sarah J Aitken

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Hannah K Long

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Nils Eling

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Lovorka Stojic

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Michelle C Ward

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Frances Connor

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  9. Tim F Rayner

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  10. Margus Lukk

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  11. Robert J Klose

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8726-7888
  12. Claudia Kutter

    Science for Life Laboratory, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8047-0058
  13. Duncan T Odom

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    Duncan.Odom@cruk.cam.ac.uk
    Competing interests
    Duncan T Odom, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6201-5599

Funding

Cancer Research UK (A20412)

  • Christina Ernst
  • Sarah J Aitken
  • Nils Eling
  • Frances Connor
  • Tim F Rayner
  • Margus Lukk
  • Claudia Kutter
  • Duncan T Odom

European Research Council (615584)

  • Duncan T Odom

Wellcome (098024/Z/11/Z)

  • Robert J Klose

Wellcome (106563/Z/14/A)

  • Sarah J Aitken

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This investigation was approved by the Animal Welfare and Ethics Review Board and followed the Cambridge Institute guidelines for the use of animals in experimental studies under Home Office license PPL 70/7535.

Human subjects: Previously published human data from Ward et al. 2013 were used for comparisons in this study.

Copyright

© 2016, Ernst et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,552
    views
  • 463
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina Ernst
  2. Jeremy Pike
  3. Sarah J Aitken
  4. Hannah K Long
  5. Nils Eling
  6. Lovorka Stojic
  7. Michelle C Ward
  8. Frances Connor
  9. Tim F Rayner
  10. Margus Lukk
  11. Robert J Klose
  12. Claudia Kutter
  13. Duncan T Odom
(2016)
Successful transmission and transcriptional deployment of a human chromosome via mouse male meiosis
eLife 5:e20235.
https://doi.org/10.7554/eLife.20235

Share this article

https://doi.org/10.7554/eLife.20235

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.