BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis

Abstract

While 20-30% of colorectal cancers (CRCs) may arise from precursors with serrated glands, only 8-10% of CRCs manifest serrated morphology at diagnosis. Markers for distinguishing CRCs arising from 'serrated' versus 'conventional adenoma' precursors are lacking. We studied 36 human serrated CRCs and found CDX2 loss or BRAF mutations in ~60% of cases and often together (p= .04). CDX2Null/BRAFV600E expression in adult mouse intestinal epithelium led to serrated morphology tumors (including carcinomas) and BRAFV600E potently interacted with CDX2 silencing to alter gene expression. Like human serrated lesions, CDX2Null/BRAFV600E-mutant epithelium expressed gastric markers. Organoids from CDX2Null/BRAFV600E-mutant colon epithelium showed serrated features, and partially recapitulated the gene expression pattern in mouse colon tissues. We present a novel mouse tumor model based on signature defects seen in many human serrated CRCs - CDX2 loss and BRAFV600E. The mouse intestinal tumors show significant phenotypic similarities to human serrated CRCs and inform about serrated CRC pathogenesis.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Naoya Sakamoto

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Ying Feng

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Carmine Stolfi

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Yuki Kurosu

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Maranne Green

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  6. Jeffry Lin

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Megan Green

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  8. Kazuhiro Sentani

    Department of Molecular Pathology, Hiroshima University, Hirosima, Japan
    Competing interests
    No competing interests declared.
  9. Wataru Yasui

    Department of Molecular Pathology, Hiroshima University, Hirosima, Japan
    Competing interests
    No competing interests declared.
  10. Martin McMahon

    Department of Dermatology, University of Utah Medical Schoo, Salt Lake City, United States
    Competing interests
    Martin McMahon, Reviewing editor, eLife.
  11. Karin M Hardiman

    Department of Surgery, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  12. Jason R Spence

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7869-3992
  13. Nobukatsu Horita

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  14. Joel K Greenson

    Department of Pathology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  15. Rork Kuick

    Department of Biostatistics, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  16. Kathy R Cho

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  17. Eric R Fearon

    Department of Internal Medicine, University of Michigan, Ann Arbor, United States
    For correspondence
    fearon@umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2867-3971

Funding

National Institutes of Health (R01CA082223)

  • Eric R Fearon

National Institutes of Health (R01CA176839)

  • Martin McMahon

National Institutes of Health (P30CA046592)

  • Eric R Fearon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures involving mice for the research described herein have been approved by the University of Michigan's Institutional Animal Care and Use Committee (PRO00005075) and were carried out according to Michigan state and US federal regulations.

Human subjects: The colorectal cancers were studied in accordance with the Ethical Guidelines for Human Genome/Gene Research enacted by the Japanese Government. We also studied human benign serrated colorectal lesions obtained from the University of Michigan tissue procurement service through an Institutional Review Board-approved protocol (#00058054).

Copyright

© 2017, Sakamoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,631
    views
  • 797
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naoya Sakamoto
  2. Ying Feng
  3. Carmine Stolfi
  4. Yuki Kurosu
  5. Maranne Green
  6. Jeffry Lin
  7. Megan Green
  8. Kazuhiro Sentani
  9. Wataru Yasui
  10. Martin McMahon
  11. Karin M Hardiman
  12. Jason R Spence
  13. Nobukatsu Horita
  14. Joel K Greenson
  15. Rork Kuick
  16. Kathy R Cho
  17. Eric R Fearon
(2017)
BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis
eLife 6:e20331.
https://doi.org/10.7554/eLife.20331

Share this article

https://doi.org/10.7554/eLife.20331

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.