Flexible theta sequence compression mediated via phase precessing interneurons

  1. Angus Chadwick
  2. Mark CW van Rossum  Is a corresponding author
  3. Matthew F Nolan  Is a corresponding author
  1. Sainsbury Wellcome Centre, University College London, United Kingdom
  2. University of Edinburgh, United Kingdom

Abstract

Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal's lifespan.

Article and author information

Author details

  1. Angus Chadwick

    Gatsby Computational Neuroscience Unit, Sainsbury Wellcome Centre, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Mark CW van Rossum

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    mvanross@inf.ed.ac.uk
    Competing interests
    Mark CW van Rossum, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6525-6814
  3. Matthew F Nolan

    Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    mattnolan@ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1062-6501

Funding

Engineering and Physical Sciences Research Council (EP/F500385/1)

  • Angus Chadwick
  • Mark CW van Rossum

Biotechnology and Biological Sciences Research Council (BB/L010496/1)

  • Matthew F Nolan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Chadwick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,449
    views
  • 445
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angus Chadwick
  2. Mark CW van Rossum
  3. Matthew F Nolan
(2016)
Flexible theta sequence compression mediated via phase precessing interneurons
eLife 5:e20349.
https://doi.org/10.7554/eLife.20349

Share this article

https://doi.org/10.7554/eLife.20349

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.