Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody

Abstract

Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here we present the crystal structure of PfCyRPA and of its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. While PfCyRPA adopts a 6-bladed β-propeller structure with similarity to the classic sialidase fold, it possesses no sialidase activity, indicating that it fulfills a non-enzymatic function. Characterization of the epitope recognized by protective antibodies will facilitate design of peptidomimetics that focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines.

Data availability

The following data sets were generated
    1. Favuzza A
    2. Pluschke G
    3. Rudolph MG
    (2017) Crystal Structure of Fab c12
    Publicly available at the RCSB Protein Data Bank (accession no: 5EZI).
    1. Favuzza A
    2. Pluschke G
    3. Rudolph MG
    (2017) Crystal Structure of Fab c12
    Publicly available at the RCSB Protein Data Bank (accession no: 5EZL).
    1. Favuzza A
    2. Pluschke G
    3. Rudolph MG
    (2017) Crystal Structure of Fab c12
    Publicly available at the RCSB Protein Data Bank (accession no: 5EZJ).
    1. Favuzza A
    2. Pluschke G
    3. Rudolph MG
    (2017) Crystal Structure of PfCyRPA
    Publicly available at the RCSB Protein Data Bank (accession no: 5EZN).
    1. Favuzza A
    2. Pluschke G
    3. Rudolph MG
    (2017) Crystal Structure of PfCyRPA
    Publicly available at the RCSB Protein Data Bank (accession no: 5EZO).
The following previously published data sets were used

Article and author information

Author details

  1. Paola Favuzza

    Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1394-927X
  2. Elena Guffart

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Marco Tamborrini

    Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Bianca Scherer

    Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Anita M Dreyer

    Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Arne C Rufer

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Erny

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Joerg Hoernschemeyer

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ralf Thoma

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Georg Schmid

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Bernard Gsell

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Araceli Lamelas

    Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  13. Joerg Benz

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Catherine Joseph

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Hugues Matile

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Gerd Pluschke

    Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
    For correspondence
    Gerd.Pluschke@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1957-2925
  17. Markus G Rudolph

    Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
    For correspondence
    markus.rudolph@roche.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Uniscientia Stiftung

  • Gerd Pluschke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving living animals were performed in strict accordance with the Rules and Regulations for the Protection of Animal Rights (Tierschutzverordnung) of the Swiss Federal Food Safety and Veterinary Office. The protocol was granted ethical approval by the Veterinary Office of the county of Basel-Stadt, Switzerland (Permit Numbers: 2375 and 2303).

Copyright

© 2017, Favuzza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,093
    views
  • 627
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paola Favuzza
  2. Elena Guffart
  3. Marco Tamborrini
  4. Bianca Scherer
  5. Anita M Dreyer
  6. Arne C Rufer
  7. Johannes Erny
  8. Joerg Hoernschemeyer
  9. Ralf Thoma
  10. Georg Schmid
  11. Bernard Gsell
  12. Araceli Lamelas
  13. Joerg Benz
  14. Catherine Joseph
  15. Hugues Matile
  16. Gerd Pluschke
  17. Markus G Rudolph
(2017)
Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody
eLife 6:e20383.
https://doi.org/10.7554/eLife.20383

Share this article

https://doi.org/10.7554/eLife.20383

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.