1. Neuroscience
Download icon

Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators

  1. Kristen M Smith-Edwards
  2. Jennifer J DeBerry
  3. Jami L Saloman
  4. Brian M Davis  Is a corresponding author
  5. Jeffery C Woodbury  Is a corresponding author
  1. University of Wyoming, United States
  2. University of Alabama at Birmingham, United States
  3. University of Pittsburgh, United States
Research Article
  • Cited 16
  • Views 1,222
  • Annotations
Cite this article as: eLife 2016;5:e20527 doi: 10.7554/eLife.20527

Abstract

Inflammatory pain is thought to arise from increased transmission from nociceptors and recruitment of 'silent' afferents. To evaluate inflammation-induced changes, mice expressing GCaMP3 in cutaneous sensory neurons were generated and neuronal responses to mechanical stimulation in vivo before and after subcutaneous infusion of an 'inflammatory soup' (IS) were imaged in an unanesthetized preparation. Infusion of IS rapidly altered mechanical responsiveness in the majority of neurons. Surprisingly, more cells lost, rather than gained, sensitivity and 'silent' afferents that were mechanically insensitive and gained mechanosensitivity after IS exposure were rare. However, the number of formerly silent afferents that became mechanosensitive was increased 5-fold when the skin was heated briefly prior to infusion of IS. These findings suggest that pain arising from inflamed skin reflects a dramatic shift in the balance of sensory input, where gains and losses in neuronal populations results in novel output that is ultimately interpreted by the CNS as pain.

Article and author information

Author details

  1. Kristen M Smith-Edwards

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer J DeBerry

    Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jami L Saloman

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6093-6511
  4. Brian M Davis

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    bmd1@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4646-0569
  5. Jeffery C Woodbury

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    For correspondence
    woodbury@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS31826)

  • Brian M Davis

National Institutes of Health (DK101681)

  • Jennifer J DeBerry

National Institutes of Health (NS044094)

  • Jeffery C Woodbury

National Institutes of Health (RR032128)

  • Jeffery C Woodbury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were performed in accordance within guidelines of the Institutional Animal Care and Use Committees at the Universities of Pittsburgh and Wyoming and the National Institutes of Health guidelines for the Care and Use of Laboratory Animals. Approved animal protocol numbers include Univ. of Wyoming IACUC protocol #20131206JW00049-03 (for in vivo studies), # p20131203JW00048-3-03 (for ex vivo studies) and University of Pittsburgh IACUC protocol # 15106942 (for calcium imaging studies).

Reviewing Editor

  1. David D Ginty, Howard Hughes Medical Institute, Harvard Medical School, United States

Publication history

  1. Received: August 10, 2016
  2. Accepted: November 1, 2016
  3. Accepted Manuscript published: November 2, 2016 (version 1)
  4. Accepted Manuscript updated: November 2, 2016 (version 2)
  5. Version of Record published: November 21, 2016 (version 3)

Copyright

© 2016, Smith-Edwards et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,222
    Page views
  • 364
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Attila Ozsvár et al.
    Research Article

    Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of metabotropic GABAB responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABAB receptors are simultaneously active.

    1. Neuroscience
    Qiaoli Huang et al.
    Research Article

    In memory experiences, events do not exist independently but are linked with each other via structure-based organization. Structure context largely influences memory behavior, but how it is implemented in the brain remains unknown. Here, we combined magnetoencephalogram (MEG) recordings, computational modeling, and impulse-response approaches to probe the latent states when subjects held a list of items in working memory (WM). We demonstrate that sequence context reorganizes WM items into distinct latent states, i.e., being reactivated at different latencies during WM retention, and the reactivation profiles further correlate with recency behavior. In contrast, memorizing the same list of items without sequence task requirements weakens the recency effect and elicits comparable neural reactivations. Computational modeling further reveals a dominant function of sequence context, instead of passive memory decaying, in characterizing recency effect. Taken together, sequence structure context shapes the way WM items are stored in the human brain and essentially influences memory behavior.