Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators

  1. Kristen M Smith-Edwards
  2. Jennifer J DeBerry
  3. Jami L Saloman
  4. Brian M Davis  Is a corresponding author
  5. C Jeffery Woodbury  Is a corresponding author
  1. University of Wyoming, United States
  2. University of Alabama at Birmingham, United States
  3. University of Pittsburgh, United States

Abstract

Inflammatory pain is thought to arise from increased transmission from nociceptors and recruitment of 'silent' afferents. To evaluate inflammation-induced changes, mice expressing GCaMP3 in cutaneous sensory neurons were generated and neuronal responses to mechanical stimulation in vivo before and after subcutaneous infusion of an 'inflammatory soup' (IS) were imaged in an unanesthetized preparation. Infusion of IS rapidly altered mechanical responsiveness in the majority of neurons. Surprisingly, more cells lost, rather than gained, sensitivity and 'silent' afferents that were mechanically insensitive and gained mechanosensitivity after IS exposure were rare. However, the number of formerly silent afferents that became mechanosensitive was increased 5-fold when the skin was heated briefly prior to infusion of IS. These findings suggest that pain arising from inflamed skin reflects a dramatic shift in the balance of sensory input, where gains and losses in neuronal populations results in novel output that is ultimately interpreted by the CNS as pain.

Article and author information

Author details

  1. Kristen M Smith-Edwards

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer J DeBerry

    Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jami L Saloman

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6093-6511
  4. Brian M Davis

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    bmd1@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4646-0569
  5. C Jeffery Woodbury

    Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    For correspondence
    woodbury@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS31826)

  • Brian M Davis

National Institutes of Health (DK101681)

  • Jennifer J DeBerry

National Institutes of Health (NS044094)

  • Jeffery C Woodbury

National Institutes of Health (RR032128)

  • Jeffery C Woodbury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David D Ginty, Howard Hughes Medical Institute, Harvard Medical School, United States

Ethics

Animal experimentation: All studies were performed in accordance within guidelines of the Institutional Animal Care and Use Committees at the Universities of Pittsburgh and Wyoming and the National Institutes of Health guidelines for the Care and Use of Laboratory Animals. Approved animal protocol numbers include Univ. of Wyoming IACUC protocol #20131206JW00049-03 (for in vivo studies), # p20131203JW00048-3-03 (for ex vivo studies) and University of Pittsburgh IACUC protocol # 15106942 (for calcium imaging studies).

Version history

  1. Received: August 10, 2016
  2. Accepted: November 1, 2016
  3. Accepted Manuscript published: November 2, 2016 (version 1)
  4. Accepted Manuscript updated: November 2, 2016 (version 2)
  5. Version of Record published: November 21, 2016 (version 3)

Copyright

© 2016, Smith-Edwards et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,451
    views
  • 392
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristen M Smith-Edwards
  2. Jennifer J DeBerry
  3. Jami L Saloman
  4. Brian M Davis
  5. C Jeffery Woodbury
(2016)
Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators
eLife 5:e20527.
https://doi.org/10.7554/eLife.20527

Share this article

https://doi.org/10.7554/eLife.20527

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.