Abstract

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.

Article and author information

Author details

  1. Paul Andrew Clarke

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    For correspondence
    paul.clarke@icr.ac.uk
    Competing interests
    Paul Andrew Clarke, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9342-1290
  2. Maria-Jesus Ortiz-Ruiz

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Maria-Jesus Ortiz-Ruiz, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  3. Robert TePoele

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Robert TePoele, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  4. Olajumoke Adeniji-Popoola

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Olajumoke Adeniji-Popoola, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  5. Gary Box

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Gary Box, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  6. Will Court

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Will Court, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  7. Stefanie Czasch

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefanie Czasch, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  8. Samer El Bawab

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Samer El Bawab, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  9. Christina Esdar

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Christina Esdar, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  10. Ken Ewan

    School of Bioscience, Cardiff University, Cardiff, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sharon Gowan

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Sharon Gowan, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  12. Alexis De Haven Brandon

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Alexis De Haven Brandon, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  13. Phllip Hewitt

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Phllip Hewitt, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  14. Stephen M Hobbs

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Stephen M Hobbs, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  15. Wolfgang Kaufmann

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Wolfgang Kaufmann, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  16. Aurélie Mallinger

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Aurélie Mallinger, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  17. Florence Raynaud

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Florence Raynaud, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  18. Toby Roe

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Toby Roe, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  19. Felix Rohdich

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Felix Rohdich, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  20. Kai Schiemann

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Kai Schiemann, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  21. Stephanie Simon

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stephanie Simon, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  22. Richard Schneider

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Richard Schneider, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  23. Melanie Valenti

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Melanie Valenti, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  24. Stefan Weigt

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefan Weigt, KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  25. Julian Blagg

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Julian Blagg, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  26. Andree Blaukat

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Andree Blaukat, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  27. Trevor C Dale

    School of Bioscience, Cardiff University, Cardiff, United Kingdom
    For correspondence
    daletc@cardiff.ac.uk
    Competing interests
    No competing interests declared.
  28. Suzanne A Eccles

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Suzanne A Eccles, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  29. Stefan Hecht

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefan Hecht, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  30. Klaus Urbahns

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Klaus Urbahns, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  31. Paul Workman

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    For correspondence
    paul.workman@icr.ac.uk
    Competing interests
    Paul Workman, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  32. Dirk Wienke

    Merck KGaA, Darmstadt, Germany
    For correspondence
    dirk.wienke@merckgroup.com
    Competing interests
    Dirk Wienke, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.

Funding

Cancer Research UK (C309/A11566, C368/A6743, A368/A7990)

  • Paul Workman

Breast Cancer Now (2008MayPR16)

  • Trevor C Dale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In the UK, all animal work was conducted in accordance with National Institute for Cancer Research guidelines, with the research programme and procedures approved by the local Animal Welfare and Ethical Review Boards and subject to UK Government Home Office regulations (Licence PPL 70/7635 & PPL 30/3279). In Germany the animal work was carried out in accordance with the German Law on the Protection of Animals (Article 8a) and the pertaining files at the at the local animal welfare authorities in Darmstadt and Freiburg bear the references DA/375, DA4/1003, DA4/1004 and G13/13 respectively. The studies were designed in accordance with presently valid international study guidelines (e.g. ICH guideline M3 R2) and performed in compliance with animal health and welfare guidelines.The Institute of Cancer Research does not use non-rodent species in research and, where this is deemed essential, requires ethical approval for use by organizations with whom we collaborate. Pharmacokinetic and tolerability analysis of compounds in dogs, necessary for prediction of human pharmacokinetics, was approved by the ICR Animal Welfare and Ethical Review Board. Studies were sponsored and conducted in full compliance with national regulations at an Association for Assessment and Accreditation of Laboratory Animal Care accredited site of Merck Biopharma.

Copyright

© 2016, Clarke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,346
    views
  • 1,216
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Andrew Clarke
  2. Maria-Jesus Ortiz-Ruiz
  3. Robert TePoele
  4. Olajumoke Adeniji-Popoola
  5. Gary Box
  6. Will Court
  7. Stefanie Czasch
  8. Samer El Bawab
  9. Christina Esdar
  10. Ken Ewan
  11. Sharon Gowan
  12. Alexis De Haven Brandon
  13. Phllip Hewitt
  14. Stephen M Hobbs
  15. Wolfgang Kaufmann
  16. Aurélie Mallinger
  17. Florence Raynaud
  18. Toby Roe
  19. Felix Rohdich
  20. Kai Schiemann
  21. Stephanie Simon
  22. Richard Schneider
  23. Melanie Valenti
  24. Stefan Weigt
  25. Julian Blagg
  26. Andree Blaukat
  27. Trevor C Dale
  28. Suzanne A Eccles
  29. Stefan Hecht
  30. Klaus Urbahns
  31. Paul Workman
  32. Dirk Wienke
(2016)
Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases
eLife 5:e20722.
https://doi.org/10.7554/eLife.20722

Share this article

https://doi.org/10.7554/eLife.20722

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.