Abstract

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.
    1. Subramanian A
    2. Tamayo P
    3. Mootha VK
    4. Mukherjee S
    5. Ebert BL
    6. Gillette MA
    7. Paulovich A
    8. Pomeroy SL
    9. Golub TR
    10. Lander ES
    11. Mesirov JP
    (2007) Molecular Signatures Database v5.1
    Available at the Gene Set Enrichment Analysis site (http://software.broadinstitute.org/gsea/msigdb/). Users are required to register to view the MSigDB gene sets and/or download the GSEA software.

Article and author information

Author details

  1. Paul Andrew Clarke

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    For correspondence
    paul.clarke@icr.ac.uk
    Competing interests
    Paul Andrew Clarke, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9342-1290
  2. Maria-Jesus Ortiz-Ruiz

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Maria-Jesus Ortiz-Ruiz, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  3. Robert TePoele

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Robert TePoele, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  4. Olajumoke Adeniji-Popoola

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Olajumoke Adeniji-Popoola, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  5. Gary Box

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Gary Box, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  6. Will Court

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Will Court, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  7. Stefanie Czasch

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefanie Czasch, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  8. Samer El Bawab

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Samer El Bawab, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  9. Christina Esdar

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Christina Esdar, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  10. Ken Ewan

    School of Bioscience, Cardiff University, Cardiff, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sharon Gowan

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Sharon Gowan, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  12. Alexis De Haven Brandon

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Alexis De Haven Brandon, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  13. Phllip Hewitt

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Phllip Hewitt, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  14. Stephen M Hobbs

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Stephen M Hobbs, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  15. Wolfgang Kaufmann

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Wolfgang Kaufmann, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  16. Aurélie Mallinger

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Aurélie Mallinger, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  17. Florence Raynaud

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Florence Raynaud, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  18. Toby Roe

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Toby Roe, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  19. Felix Rohdich

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Felix Rohdich, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  20. Kai Schiemann

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Kai Schiemann, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  21. Stephanie Simon

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stephanie Simon, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  22. Richard Schneider

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Richard Schneider, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  23. Melanie Valenti

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Melanie Valenti, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  24. Stefan Weigt

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefan Weigt, KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  25. Julian Blagg

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Julian Blagg, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  26. Andree Blaukat

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Andree Blaukat, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  27. Trevor C Dale

    School of Bioscience, Cardiff University, Cardiff, United Kingdom
    For correspondence
    daletc@cardiff.ac.uk
    Competing interests
    No competing interests declared.
  28. Suzanne A Eccles

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    Suzanne A Eccles, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  29. Stefan Hecht

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Stefan Hecht, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  30. Klaus Urbahns

    Merck KGaA, Darmstadt, Germany
    Competing interests
    Klaus Urbahns, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.
  31. Paul Workman

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    For correspondence
    paul.workman@icr.ac.uk
    Competing interests
    Paul Workman, Current or former employee of The Institute of Cancer Research, which has a commercial interest in the development of WNT pathway inhibitors.
  32. Dirk Wienke

    Merck KGaA, Darmstadt, Germany
    For correspondence
    dirk.wienke@merckgroup.com
    Competing interests
    Dirk Wienke, Current or former employee of Merck KGaA (Darmstadt, Germany), which has a commercial interest in the development of WNT pathway inhibitors.

Funding

Cancer Research UK (C309/A11566, C368/A6743, A368/A7990)

  • Paul Workman

Breast Cancer Now (2008MayPR16)

  • Trevor C Dale

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In the UK, all animal work was conducted in accordance with National Institute for Cancer Research guidelines, with the research programme and procedures approved by the local Animal Welfare and Ethical Review Boards and subject to UK Government Home Office regulations (Licence PPL 70/7635 & PPL 30/3279). In Germany the animal work was carried out in accordance with the German Law on the Protection of Animals (Article 8a) and the pertaining files at the at the local animal welfare authorities in Darmstadt and Freiburg bear the references DA/375, DA4/1003, DA4/1004 and G13/13 respectively. The studies were designed in accordance with presently valid international study guidelines (e.g. ICH guideline M3 R2) and performed in compliance with animal health and welfare guidelines.The Institute of Cancer Research does not use non-rodent species in research and, where this is deemed essential, requires ethical approval for use by organizations with whom we collaborate. Pharmacokinetic and tolerability analysis of compounds in dogs, necessary for prediction of human pharmacokinetics, was approved by the ICR Animal Welfare and Ethical Review Board. Studies were sponsored and conducted in full compliance with national regulations at an Association for Assessment and Accreditation of Laboratory Animal Care accredited site of Merck Biopharma.

Copyright

© 2016, Clarke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,284
    views
  • 1,205
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Andrew Clarke
  2. Maria-Jesus Ortiz-Ruiz
  3. Robert TePoele
  4. Olajumoke Adeniji-Popoola
  5. Gary Box
  6. Will Court
  7. Stefanie Czasch
  8. Samer El Bawab
  9. Christina Esdar
  10. Ken Ewan
  11. Sharon Gowan
  12. Alexis De Haven Brandon
  13. Phllip Hewitt
  14. Stephen M Hobbs
  15. Wolfgang Kaufmann
  16. Aurélie Mallinger
  17. Florence Raynaud
  18. Toby Roe
  19. Felix Rohdich
  20. Kai Schiemann
  21. Stephanie Simon
  22. Richard Schneider
  23. Melanie Valenti
  24. Stefan Weigt
  25. Julian Blagg
  26. Andree Blaukat
  27. Trevor C Dale
  28. Suzanne A Eccles
  29. Stefan Hecht
  30. Klaus Urbahns
  31. Paul Workman
  32. Dirk Wienke
(2016)
Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases
eLife 5:e20722.
https://doi.org/10.7554/eLife.20722

Share this article

https://doi.org/10.7554/eLife.20722

Further reading

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.

    1. Cancer Biology
    2. Genetics and Genomics
    Li Min, Fanqin Bu ... Shutian Zhang
    Research Article

    It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.