1. Neuroscience
Download icon

How spatial release from masking may fail to function in a highly directional auditory System

  1. Norman Lee  Is a corresponding author
  2. Andrew C Mason
  1. University of Toronto at Scarborough, Canada
Research Article
  • Cited 4
  • Views 1,587
  • Annotations
Cite this article as: eLife 2017;6:e20731 doi: 10.7554/eLife.20731

Abstract

Spatial release from masking (SRM) occurs when spatial separation between a signal and masker decreases masked thresholds. The mechanically-coupled ears of Ormia ochracea are specialized for hyperacute directional hearing, but the possible role of SRM, or whether such specializations exhibit limitations for sound source segregation, is unknown. We recorded phonotaxis to a cricket song masked by band-limited noise. With a masker, response thresholds increased and localization was diverted away from the signal and masker. Increased separation from 6° to 90° did not decrease response thresholds or improve localization accuracy, thus SRM does not operate in this range of spatial separations. Tympanal vibrations and auditory nerve responses reveal that localization errors were consistent with changes in peripheral coding of signal location and flies localized towards the ear with better signal detection. Our results demonstrate that, in a mechanically coupled auditory system, specialization for directional hearing does not contribute to source segregation.

Article and author information

Author details

  1. Norman Lee

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    For correspondence
    leen@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-710X
  2. Andrew C Mason

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • Andrew C Mason

Natural Sciences and Engineering Research Council of Canada (PGS D3)

  • Norman Lee

Ontario Graduate Scholarship

  • Norman Lee

Society for Integrative and Comparative Biology grants-in-aid of research

  • Norman Lee

Animal Behavior Society Student Grant

  • Norman Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: August 17, 2016
  2. Accepted: April 19, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Accepted Manuscript updated: April 24, 2017 (version 2)
  5. Accepted Manuscript updated: April 25, 2017 (version 3)
  6. Version of Record published: May 24, 2017 (version 4)

Copyright

© 2017, Lee & Mason

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    Page views
  • 166
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Reeba Susan Jacob et al.
    Short Report Updated

    The Parkinson’s disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn’s function(s) at the plasma membrane.

    1. Cell Biology
    2. Neuroscience
    Javier Emperador-Melero et al.
    Research Advance

    It has long been proposed that Leukocyte common Antigen-Related Receptor Protein Tyrosine Phosphatases (LAR-RPTPs) are cell-adhesion proteins that control synapse assembly. Their synaptic nanoscale localization, however, is not established, and synapse fine structure after knockout of the three vertebrate LAR-RPTPs (PTPδ, PTPσ and LAR) has not been tested. Here, superresolution microscopy reveals that PTPδ localizes to the synaptic cleft precisely apposed to postsynaptic scaffolds of excitatory and inhibitory synapses. We next assessed synapse structure in newly generated triple-conditional knockout mice for PTPδ, PTPσ and LAR, complementing a recent independent study of synapse function after LAR-RPTP ablation (Sclip and Südhof, 2020). While mild effects on synaptic vesicle clustering and active zone architecture were detected, synapse numbers and their overall structure were unaffected, membrane anchoring of the active zone persisted, and vesicle docking and release were normal. Hence, despite their localization at synaptic appositions, LAR-RPTPs are dispensable for presynapse structure and function.