1. Neuroscience
Download icon

How spatial release from masking may fail to function in a highly directional auditory System

  1. Norman Lee  Is a corresponding author
  2. Andrew C Mason
  1. University of Toronto at Scarborough, Canada
Research Article
  • Cited 6
  • Views 1,944
  • Annotations
Cite this article as: eLife 2017;6:e20731 doi: 10.7554/eLife.20731

Abstract

Spatial release from masking (SRM) occurs when spatial separation between a signal and masker decreases masked thresholds. The mechanically-coupled ears of Ormia ochracea are specialized for hyperacute directional hearing, but the possible role of SRM, or whether such specializations exhibit limitations for sound source segregation, is unknown. We recorded phonotaxis to a cricket song masked by band-limited noise. With a masker, response thresholds increased and localization was diverted away from the signal and masker. Increased separation from 6° to 90° did not decrease response thresholds or improve localization accuracy, thus SRM does not operate in this range of spatial separations. Tympanal vibrations and auditory nerve responses reveal that localization errors were consistent with changes in peripheral coding of signal location and flies localized towards the ear with better signal detection. Our results demonstrate that, in a mechanically coupled auditory system, specialization for directional hearing does not contribute to source segregation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Norman Lee

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    For correspondence
    leen@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-710X
  2. Andrew C Mason

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • Andrew C Mason

Natural Sciences and Engineering Research Council of Canada (PGS D3)

  • Norman Lee

Ontario Graduate Scholarship

  • Norman Lee

Society for Integrative and Comparative Biology grants-in-aid of research

  • Norman Lee

Animal Behavior Society Student Grant

  • Norman Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: August 17, 2016
  2. Accepted: April 19, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Accepted Manuscript updated: April 24, 2017 (version 2)
  5. Accepted Manuscript updated: April 25, 2017 (version 3)
  6. Version of Record published: May 24, 2017 (version 4)

Copyright

© 2017, Lee & Mason

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,944
    Page views
  • 181
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Wucheng Tao et al.
    Research Article Updated

    Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP (‘learning’) are well understood, the maintenance of LTP (‘memory’) has remained contentious over the last 20 years. Here, we find that Ca2+-calmodulin-dependent kinase II (CaMKII) contributes to synaptic transmission and is required LTP maintenance. Acute inhibition of CaMKII erases LTP and transient inhibition of CaMKII enhances subsequent LTP. These findings strongly support the role of CaMKII as a molecular storage device.

    1. Medicine
    2. Neuroscience
    Zifei Liang et al.
    Tools and Resources

    1H MRI maps brain structure and function non-invasively through versatile contrasts that exploit inhomogeneity in tissue micro-environments. Inferring histopathological information from MRI findings, however, remains challenging due to absence of direct links between MRI signals and cellular structures. Here, we show that deep convolutional neural networks, developed using co-registered multi-contrast MRI and histological data of the mouse brain, can estimate histological staining intensity directly from MRI signals at each voxel. The results provide three-dimensional maps of axons and myelin with tissue contrasts that closely mimics target histology and enhanced sensitivity and specificity compared to conventional MRI markers. Furthermore, the relative contribution of each MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. We anticipate our method to be a starting point for translation of MRI results into easy-to-understand virtual histology for neurobiologists and provide resources for validating novel MRI techniques.