1. Neuroscience
Download icon

How spatial release from masking may fail to function in a highly directional auditory system

  1. Norman Lee  Is a corresponding author
  2. Andrew C Mason
  1. University of Toronto at Scarborough, Canada
Research Article
  • Cited 5
  • Views 1,787
  • Annotations
Cite this article as: eLife 2017;6:e20731 doi: 10.7554/eLife.20731

Abstract

Spatial release from masking (SRM) occurs when spatial separation between a signal and masker decreases masked thresholds. The mechanically-coupled ears of Ormia ochracea are specialized for hyperacute directional hearing, but the possible role of SRM, or whether such specializations exhibit limitations for sound source segregation, is unknown. We recorded phonotaxis to a cricket song masked by band-limited noise. With a masker, response thresholds increased and localization was diverted away from the signal and masker. Increased separation from 6° to 90° did not decrease response thresholds or improve localization accuracy, thus SRM does not operate in this range of spatial separations. Tympanal vibrations and auditory nerve responses reveal that localization errors were consistent with changes in peripheral coding of signal location and flies localized towards the ear with better signal detection. Our results demonstrate that, in a mechanically coupled auditory system, specialization for directional hearing does not contribute to source segregation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Norman Lee

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    For correspondence
    leen@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-710X
  2. Andrew C Mason

    Integrative Behaviour and Neuroscience Group, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • Andrew C Mason

Natural Sciences and Engineering Research Council of Canada (PGS D3)

  • Norman Lee

Ontario Graduate Scholarship

  • Norman Lee

Society for Integrative and Comparative Biology grants-in-aid of research

  • Norman Lee

Animal Behavior Society Student Grant

  • Norman Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: August 17, 2016
  2. Accepted: April 19, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Accepted Manuscript updated: April 24, 2017 (version 2)
  5. Accepted Manuscript updated: April 25, 2017 (version 3)
  6. Version of Record published: May 24, 2017 (version 4)

Copyright

© 2017, Lee & Mason

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,787
    Page views
  • 170
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Katherine B LeClair et al.
    Research Article

    Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article

    TRPM7 contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in CNS neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmission from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.