Enforcement of developmental lineage specificity by transcription factor Oct1

  1. Zuolian Shen
  2. Jinsuk Kang
  3. Arvind Shakya
  4. Marcin Tabaka
  5. Elke A Jarboe
  6. Aviv Regev
  7. Dean Tantin  Is a corresponding author
  1. Celgene Corporation, United States
  2. The Broad Institute of MIT and Harvard, United States
  3. University of Utah School of Medicine, United States

Abstract

Embryonic stem cells co-express Oct4 and Oct1, a related protein with similar DNA binding specificity. To study the role of Oct1 in ESC pluripotency and transcriptional control, we constructed germline and inducible-conditional Oct1 deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal and growth, but manifest defects upon differentiation. They fail to form beating cardiomyocytes, generate neurons poorly, form small, poorly differentiated teratomas, and cannot generate chimeric mice. Upon RA-mediated differentiation, Oct1 deficient cells induce lineage-appropriate developmentally poised genes poorly while lineage-inappropriate genes, including extra-embryonic genes, are inappropriately expressed. In ESCs Oct1 co-occupies a specific set of targets with Oct4, but does not occupy differentially expressed developmental targets. Instead, Oct1 occupies these targets as cells differentiate and Oct4 declines. These results identify a dynamic interplay between Oct1 and Oct4, in particular during the critical window immediately after loss of pluripotency when cells make the earliest developmental fate decisions.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Zuolian Shen

    Celgene Corporation, San Diego, United States
    Competing interests
    No competing interests declared.
  2. Jinsuk Kang

    Celgene Corporation, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Arvind Shakya

    Celgene Corporation, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Marcin Tabaka

    The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Elke A Jarboe

    Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Aviv Regev

    The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    Aviv Regev, Senior editor, eLife.
  7. Dean Tantin

    Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    dean.tantin@path.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1354-8385

Funding

National Institute of Allergy and Infectious Diseases (R01AI100873)

  • Dean Tantin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#14-06015) of the University of Utah. Every effort was made to minimize suffering.

Copyright

© 2017, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,551
    views
  • 228
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zuolian Shen
  2. Jinsuk Kang
  3. Arvind Shakya
  4. Marcin Tabaka
  5. Elke A Jarboe
  6. Aviv Regev
  7. Dean Tantin
(2017)
Enforcement of developmental lineage specificity by transcription factor Oct1
eLife 6:e20937.
https://doi.org/10.7554/eLife.20937

Share this article

https://doi.org/10.7554/eLife.20937

Further reading

    1. Developmental Biology
    Yanlin Hou, Zhengwen Nie ... Hans R Scholer
    Research Article

    During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.