CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

Abstract

Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.

Article and author information

Author details

  1. Miou Zhou

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stuart Greenhill

    Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5038-5258
  3. Shan Huang

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tawnie K Silva

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoshitake Sano

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shumin Wu

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ying Cai

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yoshiko Nagaoka

    Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Megha Sehgal

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Denise J Cai

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yong-Seok Lee

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kevin Fox

    Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
    For correspondence
    foxkd@cardiff.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  13. Alcino J Silva

    Department of Neurobiology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    silvaa@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1587-4558

Funding

National Institute of Mental Health (P50-MH0779720)

  • Alcino J Silva

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

  • Alcino J Silva

Medical Research Council (G0901299)

  • Kevin Fox

National Institute of Mental Health (P50-MH0779720)

  • Kevin Fox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed during the light phase of the cycle. All studies were approved by the UCLA Institutional Animal Care and Use Committee, also known as the Chancellor's Animal Research Committee (ARC, protocol# 1998-070), and by University of Cardiff and carried out in compliance with the United Kingdom's Animals (Scientific Procedures) Act 1986 where applicable.

Copyright

© 2016, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,608
    views
  • 1,478
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miou Zhou
  2. Stuart Greenhill
  3. Shan Huang
  4. Tawnie K Silva
  5. Yoshitake Sano
  6. Shumin Wu
  7. Ying Cai
  8. Yoshiko Nagaoka
  9. Megha Sehgal
  10. Denise J Cai
  11. Yong-Seok Lee
  12. Kevin Fox
  13. Alcino J Silva
(2016)
CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory
eLife 5:e20985.
https://doi.org/10.7554/eLife.20985

Share this article

https://doi.org/10.7554/eLife.20985

Further reading

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.