Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs

  1. Ming Wu
  2. Aljoscha Nern  Is a corresponding author
  3. W. Ryan Williamson
  4. Mai M Morimoto
  5. Michael B Reiser
  6. Gwyneth M Card
  7. Gerald M Rubin  Is a corresponding author
  1. Howard Hughes Medical Institute, United States
  2. Janelia Farm Research Campus, United States

Abstract

Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.

Article and author information

Author details

  1. Ming Wu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aljoscha Nern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    nerna@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3822-489X
  3. W. Ryan Williamson

    Card Lab, Janelia Farm Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mai M Morimoto

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael B Reiser

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4108-4517
  6. Gwyneth M Card

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    rubing@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-8703

Funding

Howard Hughes Medical Institute

  • Ming Wu
  • Aljoscha Nern
  • W. Ryan Williamson
  • Mai M Morimoto
  • Michael B Reiser
  • Gwyneth M Card
  • Gerald M Rubin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,485
    views
  • 2,005
    downloads
  • 254
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ming Wu
  2. Aljoscha Nern
  3. W. Ryan Williamson
  4. Mai M Morimoto
  5. Michael B Reiser
  6. Gwyneth M Card
  7. Gerald M Rubin
(2016)
Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs
eLife 5:e21022.
https://doi.org/10.7554/eLife.21022

Share this article

https://doi.org/10.7554/eLife.21022

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.