Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity

  1. Qiang Chen
  2. Zhe Pei
  3. David Koren
  4. Wei Wei  Is a corresponding author
  1. The University of Chicago, United States
  2. The City College of New York, United States

Abstract

The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted this inhibition by perturbing distinct sets of GABAergic inputs onto SACs - removing either GABA release or GABA receptors from SACs. We found that lateral inhibition onto Off SACs from non-SAC amacrine cells is required for optimal direction selectivity of the Off pathway. In contrast, lateral inhibition onto On SACs is not necessary for direction selectivity of the On pathway when the moving object is on a homogenous background, but is required when the background is noisy. These results demonstrate that distinct sets of inhibitory mechanisms are recruited to generate direction selectivity under different visual conditions.

Article and author information

Author details

  1. Qiang Chen

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhe Pei

    Sophie Davis School of Biomedical Education, The City College of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Koren

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Wei

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    weiw@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-5974

Funding

National Eye Institute

  • David Koren
  • Wei Wei

Whitehall Foundation

  • Wei Wei

E. Matilda Ziegler Foundation for the Blind

  • Wei Wei

Karl Kirchgessner Foundation

  • Wei Wei

Sloan Foundation

  • Wei Wei

The funders provide financial support to this manuscript in study design, data collection and interpretation, and the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures to maintain and use mice were in accordance with the University of Chicago Institutional Animal Care and Use Committee (Protocol number ACUP 72247) and in conformance with the NIH Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy.

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,695
    views
  • 524
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiang Chen
  2. Zhe Pei
  3. David Koren
  4. Wei Wei
(2016)
Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity
eLife 5:e21053.
https://doi.org/10.7554/eLife.21053

Share this article

https://doi.org/10.7554/eLife.21053

Further reading

    1. Neuroscience
    Sihan Yang, Anastasia Kiyonaga
    Insight

    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.

    1. Developmental Biology
    2. Neuroscience
    Agnik Dasgupta, Caleb C Reagor ... AJ Hudspeth
    Research Article

    In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.