Abstract

Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.

Article and author information

Author details

  1. Yasuhiro Ogawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoko Irukayama-Tomobe

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Nobuyuki Murakoshi

    Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Maiko Kiyama

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yui Ishikawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoto Hosokawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hiromu Tominaga

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Shuntaro Uchida

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Saki Kimura

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Mika Kanuka

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Miho Morita

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Michito Hamada

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Satoru Takahashi

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Yu Hayashi

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Masashi Yanagisawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    For correspondence
    yanagisawa.masa.fu@u.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7358-4022

Funding

Ministry of Education, Culture, Sports, Science, and Technology (WPI)

  • Masashi Yanagisawa

Japan Society for the Promotion of Science (KAKENHI Grant Number 26220207)

  • Masashi Yanagisawa

Japan Society for the Promotion of Science (FIRST Program)

  • Masashi Yanagisawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were carried out in a humane manner after receiving approval from the Institutional Animal Care and Use Committee of the University of Tsukuba, and in accordance with the Regulation for Animal Experiments in our university and Fundamental Guideline for Proper Conduct of Animal Experiments and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).Permit Nmber: 16-081

Copyright

© 2016, Ogawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,650
    views
  • 859
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuhiro Ogawa
  2. Yoko Irukayama-Tomobe
  3. Nobuyuki Murakoshi
  4. Maiko Kiyama
  5. Yui Ishikawa
  6. Naoto Hosokawa
  7. Hiromu Tominaga
  8. Shuntaro Uchida
  9. Saki Kimura
  10. Mika Kanuka
  11. Miho Morita
  12. Michito Hamada
  13. Satoru Takahashi
  14. Yu Hayashi
  15. Masashi Yanagisawa
(2016)
Peripherally administered orexin improves survival of mice with endotoxin shock
eLife 5:e21055.
https://doi.org/10.7554/eLife.21055

Share this article

https://doi.org/10.7554/eLife.21055

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.