Abstract

Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.

Article and author information

Author details

  1. Yasuhiro Ogawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoko Irukayama-Tomobe

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Nobuyuki Murakoshi

    Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Maiko Kiyama

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yui Ishikawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoto Hosokawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hiromu Tominaga

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Shuntaro Uchida

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Saki Kimura

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Mika Kanuka

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Miho Morita

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Michito Hamada

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Satoru Takahashi

    Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  14. Yu Hayashi

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Masashi Yanagisawa

    International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
    For correspondence
    yanagisawa.masa.fu@u.tsukuba.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7358-4022

Funding

Ministry of Education, Culture, Sports, Science, and Technology (WPI)

  • Masashi Yanagisawa

Japan Society for the Promotion of Science (KAKENHI Grant Number 26220207)

  • Masashi Yanagisawa

Japan Society for the Promotion of Science (FIRST Program)

  • Masashi Yanagisawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were carried out in a humane manner after receiving approval from the Institutional Animal Care and Use Committee of the University of Tsukuba, and in accordance with the Regulation for Animal Experiments in our university and Fundamental Guideline for Proper Conduct of Animal Experiments and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).Permit Nmber: 16-081

Copyright

© 2016, Ogawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,688
    views
  • 867
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuhiro Ogawa
  2. Yoko Irukayama-Tomobe
  3. Nobuyuki Murakoshi
  4. Maiko Kiyama
  5. Yui Ishikawa
  6. Naoto Hosokawa
  7. Hiromu Tominaga
  8. Shuntaro Uchida
  9. Saki Kimura
  10. Mika Kanuka
  11. Miho Morita
  12. Michito Hamada
  13. Satoru Takahashi
  14. Yu Hayashi
  15. Masashi Yanagisawa
(2016)
Peripherally administered orexin improves survival of mice with endotoxin shock
eLife 5:e21055.
https://doi.org/10.7554/eLife.21055

Share this article

https://doi.org/10.7554/eLife.21055

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Immunology and Inflammation
    Xiaoyu Meng, Yezhang Zhu ... Lie Wang
    Research Article

    FOXP3-expressing regulatory T (Treg) cells play a pivotal role in maintaining immune homeostasis and tolerance, with their activation being crucial for preventing various inflammatory responses. However, the mechanisms governing the epigenetic program in Treg cells during their dynamic activation remain unclear. In this study, we demonstrate that CXXC-finger protein 1 (CXXC1) interacts with the transcription factor FOXP3 and facilitates the regulation of target genes by modulating H3K4me3 deposition. Cxxc1 deletion in Treg cells leads to severe inflammatory disease and spontaneous T cell activation, with impaired immunosuppressive function. As a transcriptional regulator, CXXC1 promotes the expression of key Treg functional markers under steady-state conditions, which are essential for the maintenance of Treg cell homeostasis and their suppressive functions. Epigenetically, CXXC1 binds to the genomic regulatory regions of Treg program genes in mouse Treg cells, overlapping with FOXP3-binding sites. Given its critical role in Treg cell homeostasis, CXXC1 presents itself as a promising therapeutic target for autoimmune diseases.